// Copyright 2025 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef HIGHWAY_HWY_AUTO_TUNE_H_ #define HIGHWAY_HWY_AUTO_TUNE_H_ #include #include #include // memmove #include #include #include "hwy/aligned_allocator.h" // Span #include "hwy/base.h" // HWY_MIN #include "hwy/contrib/sort/vqsort.h" // Infrastructure for auto-tuning (choosing optimal parameters at runtime). namespace hwy { // O(1) storage to estimate the central tendency of hundreds of independent // distributions (one per configuration). The number of samples per distribution // (`kMinSamples`) varies from few to dozens. We support both by first storing // values in a buffer, and when full, switching to online variance estimation. // Modified from `hwy/stats.h`. class CostDistribution { public: static constexpr size_t kMaxValues = 14; // for total size of 128 bytes void Notify(const double x) { if (HWY_UNLIKELY(x < 0.0)) { HWY_WARN("Ignoring negative cost %f.", x); return; } // Online phase after filling and warm-up. if (HWY_LIKELY(IsOnline())) return OnlineNotify(x); // Fill phase: store up to `kMaxValues` values. values_[num_values_++] = x; HWY_DASSERT(num_values_ <= kMaxValues); if (HWY_UNLIKELY(num_values_ == kMaxValues)) { WarmUpOnline(); HWY_DASSERT(IsOnline()); } } // Returns an estimate of the true cost, mitigating the impact of noise. // // Background and observations from time measurements in `thread_pool.h`: // - We aim for O(1) storage because there may be hundreds of instances. // - The mean is biased upwards by mostly additive noise: particularly // interruptions such as context switches, but also contention. // - The minimum is not a robust estimator because there are also "lucky // shots" (1.2-1.6x lower values) where interruptions or contention happen // to be low. // - We want to preserve information about contention and a configuration's // sensitivity to it. Otherwise, we are optimizing for the best-case, not // the common case. // - It is still important to minimize the influence of outliers, such as page // faults, which can cause multiple times larger measurements. // - Detecting outliers based only on the initial variance is too brittle. If // the sample is narrow, measurements will fluctuate across runs because // too many measurements are considered outliers. This would cause the // 'best' configuration to vary. // // Approach: // - Use Winsorization to reduce the impact of outliers, while preserving // information on the central tendency. // - Continually update the thresholds based on the online variance, with // exponential smoothing for stability. // - Trim the initial sample via MAD or skewness for a robust estimate of the // variance. double EstimateCost() { if (!IsOnline()) { WarmUpOnline(); HWY_DASSERT(IsOnline()); } return Mean(); } // Multiplex online state into values_ to allow higher `kMaxValues`. // Public for inspection in tests. Do not use directly. double& M1() { return values_[0]; } // Moments for variance. double& M2() { return values_[1]; } double& Mean() { return values_[2]; } // Exponential smoothing. double& Stddev() { return values_[3]; } double& Lower() { return values_[4]; } double& Upper() { return values_[5]; } private: static double Median(double* to_sort, size_t n) { HWY_DASSERT(n >= 2); // F64 is supported everywhere except Armv7. #if !HWY_ARCH_ARM_V7 VQSort(to_sort, n, SortAscending()); #else // Values are known to be finite and non-negative, hence sorting as U64 is // equivalent. VQSort(reinterpret_cast(to_sort), n, SortAscending()); #endif if (n & 1) return to_sort[n / 2]; // Even length: average of two middle elements. return (to_sort[n / 2] + to_sort[n / 2 - 1]) * 0.5; } static double MAD(const double* values, size_t n, const double median) { double abs_dev[kMaxValues]; for (size_t i = 0; i < n; ++i) { abs_dev[i] = ScalarAbs(values[i] - median); } return Median(abs_dev, n); } // If `num_values_` is large enough, sorts and discards outliers: either via // MAD, or if too many values are equal, by trimming according to skewness. void RemoveOutliers() { if (num_values_ < 3) return; // Not enough to discard two. HWY_DASSERT(num_values_ <= kMaxValues); // Given the noise level in `auto_tune_test`, it can happen that 1/4 of the // sample is an outlier *in either direction*. Use median absolute // deviation, which is robust to almost half of the sample being outliers. const double median = Median(values_, num_values_); // sorts in-place. const double mad = MAD(values_, num_values_, median); // At least half the sample is equal. if (mad == 0.0) { // Estimate skewness to decide which side to trim more. const double skewness = (values_[num_values_ - 1] - median) - (median - values_[0]); const size_t trim = HWY_MAX(num_values_ / 2, size_t{2}); const size_t left = HWY_MAX(skewness < 0.0 ? trim * 3 / 4 : trim / 4, size_t{1}); num_values_ -= trim; HWY_DASSERT(num_values_ >= 1); memmove(values_, values_ + left, num_values_ * sizeof(values_[0])); return; } const double upper = median + 5.0 * mad; const double lower = median - 5.0 * mad; size_t right = num_values_ - 1; while (values_[right] > upper) --right; // Nonzero MAD implies no more than half are equal, so we did not advance // beyond the median. HWY_DASSERT(right >= num_values_ / 2); size_t left = 0; while (left < right && values_[left] < lower) ++left; HWY_DASSERT(left <= num_values_ / 2); num_values_ = right - left + 1; memmove(values_, values_ + left, num_values_ * sizeof(values_[0])); } double SampleMean() const { // Only called in non-online phase, but buffer might not be full. HWY_DASSERT(!IsOnline() && 0 != num_values_ && num_values_ <= kMaxValues); double sum = 0.0; for (size_t i = 0; i < num_values_; ++i) { sum += values_[i]; } return sum / static_cast(num_values_); } // Unbiased estimator for population variance even for small `num_values_`. double SampleVariance(double sample_mean) const { HWY_DASSERT(sample_mean >= 0.0); // we checked costs are non-negative. // Only called in non-online phase, but buffer might not be full. HWY_DASSERT(!IsOnline() && 0 != num_values_ && num_values_ <= kMaxValues); if (HWY_UNLIKELY(num_values_ == 1)) return 0.0; // prevent divide-by-zero. double sum2 = 0.0; for (size_t i = 0; i < num_values_; ++i) { const double d = values_[i] - sample_mean; sum2 += d * d; } return sum2 / static_cast(num_values_ - 1); } bool IsOnline() const { return online_n_ > 0.0; } void OnlineNotify(double x) { // Winsorize. x = HWY_MIN(HWY_MAX(Lower(), x), Upper()); // Welford's online variance estimator. // https://media.thinkbrg.com/wp-content/uploads/2020/06/19094655/720_720_McCrary_ImplementingAlgorithms_Whitepaper_20151119_WEB.pdf#page=7.09 const double n_minus_1 = online_n_; online_n_ += 1.0; const double d = x - M1(); const double d_div_n = d / online_n_; M1() += d_div_n; HWY_DASSERT(M1() >= Lower()); M2() += d * n_minus_1 * d_div_n; // d^2 * (N-1)/N // HWY_MAX avoids divide-by-zero. const double stddev = std::sqrt(M2() / HWY_MAX(1.0, n_minus_1)); // Exponential smoothing. constexpr double kNew = 0.2; // relatively fast update constexpr double kOld = 1.0 - kNew; Mean() = M1() * kNew + Mean() * kOld; Stddev() = stddev * kNew + Stddev() * kOld; // Update thresholds from smoothed mean and stddev to enable recovering from // a too narrow initial range due to excessive trimming. Lower() = Mean() - 3.5 * Stddev(); Upper() = Mean() + 3.5 * Stddev(); } void WarmUpOnline() { RemoveOutliers(); // Compute and copy before writing to `M1`, which overwrites `values_`! const double sample_mean = SampleMean(); const double sample_variance = SampleVariance(sample_mean); double copy[kMaxValues]; hwy::CopyBytes(values_, copy, num_values_ * sizeof(values_[0])); M1() = M2() = 0.0; Mean() = sample_mean; Stddev() = std::sqrt(sample_variance); // For single-value or all-equal sample, widen the range, else we will only // accept the same value. if (Stddev() == 0.0) Stddev() = Mean() / 2; // High tolerance because the distribution is not actually Gaussian, and // we trimmed up to *half*, and do not want to reject too many values in // the online phase. Lower() = Mean() - 4.0 * Stddev(); Upper() = Mean() + 4.0 * Stddev(); // Feed copied values into online estimator. for (size_t i = 0; i < num_values_; ++i) { OnlineNotify(copy[i]); } HWY_DASSERT(IsOnline()); #if SIZE_MAX == 0xFFFFFFFFu (void)padding_; #endif } size_t num_values_ = 0; // size of `values_` <= `kMaxValues` #if SIZE_MAX == 0xFFFFFFFFu uint32_t padding_ = 0; #endif double online_n_ = 0.0; // number of calls to `OnlineNotify`. double values_[kMaxValues]; }; static_assert(sizeof(CostDistribution) == 128, ""); // Implements a counter with wrap-around, plus the ability to skip values. // O(1) time, O(N) space via doubly-linked list of indices. class NextWithSkip { public: NextWithSkip() {} explicit NextWithSkip(size_t num) { links_.reserve(num); for (size_t i = 0; i < num; ++i) { links_.emplace_back(i, num); } } size_t Next(size_t pos) { HWY_DASSERT(pos < links_.size()); HWY_DASSERT(!links_[pos].IsRemoved()); return links_[pos].Next(); } // Must not be called for an already skipped position. Ignores an attempt to // skip the last remaining position. void Skip(size_t pos) { HWY_DASSERT(!links_[pos].IsRemoved()); // not already skipped. const size_t prev = links_[pos].Prev(); const size_t next = links_[pos].Next(); if (prev == pos || next == pos) return; // last remaining position. links_[next].SetPrev(prev); links_[prev].SetNext(next); links_[pos].Remove(); } private: // Combine prev/next into one array to improve locality/reduce allocations. class Link { // Bit-shifts avoid potentially expensive 16-bit loads. Store `next` at the // top and `prev` at the bottom for extraction with a single shift/AND. // There may be hundreds of configurations, so 8 bits are not enough. static constexpr size_t kBits = 14; static constexpr size_t kShift = 32 - kBits; static constexpr uint32_t kMaxNum = 1u << kBits; public: Link(size_t pos, size_t num) { HWY_DASSERT(num < kMaxNum); const size_t prev = pos == 0 ? num - 1 : pos - 1; const size_t next = pos == num - 1 ? 0 : pos + 1; bits_ = (static_cast(next) << kShift) | static_cast(prev); HWY_DASSERT(Next() == next && Prev() == prev); HWY_DASSERT(!IsRemoved()); } bool IsRemoved() const { return (bits_ & kMaxNum) != 0; } void Remove() { bits_ |= kMaxNum; } size_t Next() const { return bits_ >> kShift; } size_t Prev() const { return bits_ & (kMaxNum - 1); } void SetNext(size_t next) { HWY_DASSERT(next < kMaxNum); bits_ &= (~0u >> kBits); // clear old next bits_ |= static_cast(next) << kShift; HWY_DASSERT(Next() == next); HWY_DASSERT(!IsRemoved()); } void SetPrev(size_t prev) { HWY_DASSERT(prev < kMaxNum); bits_ &= ~(kMaxNum - 1); // clear old prev bits_ |= static_cast(prev); HWY_DASSERT(Prev() == prev); HWY_DASSERT(!IsRemoved()); } private: uint32_t bits_; }; std::vector links_; }; // State machine for choosing at runtime the lowest-cost `Config`, which is // typically a struct containing multiple parameters. For an introduction, see // "Auto-Tuning and Performance Portability on Heterogeneous Hardware". // // **Which parameters** // Note that simple parameters such as the L2 cache size can be directly queried // via `hwy/contrib/thread_pool/topology.h`. Difficult to predict parameters // such as task granularity are more appropriate for auto-tuning. We also // suggest that at least some parameters should also be 'algorithm variants' // such as parallel vs. serial, or 2D tiling vs. 1D striping. // // **Search strategy** // To guarantee the optimal result, we use exhaustive search, which is suitable // for around 10 parameters and a few hundred combinations of 'candidate' // configurations. // // **How to generate candidates** // To keep this framework simple and generic, applications enumerate the search // space and pass the list of all feasible candidates to `SetCandidates` before // the first call to `NextConfig`. Applications should prune the space as much // as possible, e.g. by upper-bounding parameters based on the known cache // sizes, and applying constraints such as one being a multiple of another. // // **Usage** // Applications typically conditionally branch to the code implementing the // configuration returned by `NextConfig`. They measure the cost of running it // and pass that to `NotifyCost`. Branching avoids the complexity and // opaqueness of a JIT. The number of branches can be reduced (at the cost of // code size) by inlining low-level decisions into larger code regions, e.g. by // hoisting them outside hot loops. // // **What is cost** // Cost is an arbitrary `uint64_t`, with lower values being better. Most // applications will use the elapsed time. If the tasks being tuned are short, // it is important to use a high-resolution timer such as `hwy/timer.h`. Energy // may also be useful [https://www.osti.gov/servlets/purl/1361296]. // // **Online vs. offline** // Although applications can auto-tune once, offline, it may be difficult to // ensure the stored configuration still applies to the current circumstances. // Thus we recommend online auto-tuning, re-discovering the configuration on // each run. We assume the overhead of bookkeeping and measuring cost is // negligible relative to the actual work. The cost of auto-tuning is then that // of running sub-optimal configurations. Assuming the best configuration is // better than baseline, and the work is performed many thousands of times, the // cost is outweighed by the benefits. // // **kMinSamples** // To further reduce overhead, after `kMinSamples` rounds (= measurements of // each configuration) we start excluding configurations from further // measurements if they are sufficiently worse than the current best. // `kMinSamples` can be several dozen when the tasks being tuned take a few // microseconds. Even for longer tasks, it should be at least 2 for some noise // tolerance. After this, there are another `kMinSamples / 2 + 1` rounds before // declaring the winner. template class AutoTune { public: // Returns non-null best configuration if auto-tuning has already finished. // Otherwise, callers continue calling `NextConfig` and `NotifyCost`. // Points into `Candidates()`. const Config* Best() const { return best_; } // If false, caller must call `SetCandidates` before `NextConfig`. bool HasCandidates() const { HWY_DASSERT(!Best()); return !candidates_.empty(); } // WARNING: invalidates `Best()`, do not call if that is non-null. void SetCandidates(std::vector candidates) { HWY_DASSERT(!Best() && !HasCandidates()); candidates_.swap(candidates); HWY_DASSERT(HasCandidates()); costs_.resize(candidates_.size()); list_ = NextWithSkip(candidates_.size()); } // Typically called after Best() is non-null to compare all candidates' costs. Span Candidates() const { HWY_DASSERT(HasCandidates()); return Span(candidates_.data(), candidates_.size()); } Span Costs() { return Span(costs_.data(), costs_.size()); } // Returns the current `Config` to measure. const Config& NextConfig() const { HWY_DASSERT(!Best() && HasCandidates()); return candidates_[config_idx_]; } // O(1) except at the end of each round, which is O(N). void NotifyCost(uint64_t cost) { HWY_DASSERT(!Best() && HasCandidates()); costs_[config_idx_].Notify(static_cast(cost)); // Save now before we update `config_idx_`. const size_t my_idx = config_idx_; // Only retrieve once we have enough samples, otherwise, we switch to // online variance before the buffer is populated. const double my_cost = rounds_complete_ >= kMinSamples ? costs_[config_idx_].EstimateCost() : 0.0; // Advance to next non-skipped config with wrap-around. This decorrelates // measurements by not immediately re-measuring the same config. config_idx_ = list_.Next(config_idx_); // Might still equal `my_idx` if this is the only non-skipped config. // Disqualify from future `NextConfig` if cost was too far beyond the // current best. This reduces the number of measurements, while tolerating // noise in the first few measurements. Must happen after advancing. if (my_cost > skip_if_above_) { list_.Skip(my_idx); } // Wrap-around indicates the round is complete. if (HWY_UNLIKELY(config_idx_ <= my_idx)) { ++rounds_complete_; // Enough samples for stable estimates: update the thresholds. if (rounds_complete_ >= kMinSamples) { double best_cost = HighestValue(); size_t idx_min = 0; for (size_t i = 0; i < candidates_.size(); ++i) { const double estimate = costs_[i].EstimateCost(); if (estimate < best_cost) { best_cost = estimate; idx_min = i; } } skip_if_above_ = best_cost * 1.25; // After sufficient rounds, declare the winner. if (HWY_UNLIKELY(rounds_complete_ == 3 * kMinSamples / 2 + 1)) { best_ = &candidates_[idx_min]; HWY_DASSERT(Best()); } } } } // Avoid printing during the first few rounds, because those might be noisy // and not yet skipped. bool ShouldPrint() { return rounds_complete_ > kMinSamples; } private: const Config* best_ = nullptr; std::vector candidates_; std::vector costs_; // one per candidate size_t config_idx_ = 0; // [0, candidates_.size()) NextWithSkip list_; size_t rounds_complete_ = 0; double skip_if_above_ = 0.0; }; } // namespace hwy #endif // HIGHWAY_HWY_AUTO_TUNE_H_