// SPDX-License-Identifier: MIT #include "m68k.h" #include "emulator.h" #include "platforms/platforms.h" #include "input/input.h" #include "m68kcpu.h" #include "platforms/amiga/Gayle.h" #include "platforms/amiga/amiga-registers.h" #include "platforms/amiga/amiga-interrupts.h" #include "platforms/amiga/rtg/rtg.h" #include "platforms/amiga/hunk-reloc.h" #include "platforms/amiga/piscsi/piscsi.h" #include "platforms/amiga/piscsi/piscsi-enums.h" #include "platforms/amiga/net/pi-net.h" #include "platforms/amiga/net/pi-net-enums.h" #include "platforms/amiga/ahi/pi_ahi.h" #include "platforms/amiga/ahi/pi-ahi-enums.h" #include "platforms/amiga/pistorm-dev/pistorm-dev.h" #include "platforms/amiga/pistorm-dev/pistorm-dev-enums.h" #include "gpio/ps_protocol.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "m68kops.h" #define KEY_POLL_INTERVAL_MSEC 5000 unsigned int ovl; int kb_hook_enabled = 0; int mouse_hook_enabled = 0; int cpu_emulation_running = 1; int swap_df0_with_dfx = 0; int spoof_df0_id = 0; int move_slow_to_chip = 0; int force_move_slow_to_chip = 0; uint8_t mouse_dx = 0, mouse_dy = 0; uint8_t mouse_buttons = 0; uint8_t mouse_extra = 0; extern uint8_t gayle_int; extern uint8_t gayle_ide_enabled; extern uint8_t gayle_emulation_enabled; extern uint8_t gayle_a4k_int; extern volatile unsigned int *gpio; extern volatile uint16_t srdata; extern uint8_t realtime_graphics_debug, emulator_exiting; extern uint8_t rtg_on; uint8_t realtime_disassembly, int2_enabled = 0; uint32_t do_disasm = 0, old_level; uint32_t last_irq = 8, last_last_irq = 8; uint8_t ipl_enabled[8]; uint8_t end_signal = 0, load_new_config = 0; char disasm_buf[4096]; #define KICKBASE 0xF80000 #define KICKSIZE 0x7FFFF int mem_fd, mouse_fd = -1, keyboard_fd = -1; int mem_fd_gpclk; int irq; int gayleirq; #define MUSASHI_HAX #ifdef MUSASHI_HAX #include "m68kcpu.h" extern m68ki_cpu_core m68ki_cpu; extern int m68ki_initial_cycles; extern int m68ki_remaining_cycles; #define M68K_SET_IRQ(i) old_level = CPU_INT_LEVEL; \ CPU_INT_LEVEL = (i << 8); \ if(old_level != 0x0700 && CPU_INT_LEVEL == 0x0700) \ m68ki_cpu.nmi_pending = TRUE; #define M68K_END_TIMESLICE m68ki_initial_cycles = GET_CYCLES(); \ SET_CYCLES(0); #else #define M68K_SET_IRQ m68k_set_irq #define M68K_END_TIMESLICE m68k_end_timeslice() #endif #define NOP asm("nop"); asm("nop"); asm("nop"); asm("nop"); #define DEBUG_EMULATOR #ifdef DEBUG_EMULATOR #define DEBUG printf #else #define DEBUG(...) #endif // Configurable emulator options unsigned int cpu_type = M68K_CPU_TYPE_68000; unsigned int loop_cycles = 300, irq_status = 0; struct emulator_config *cfg = NULL; char keyboard_file[256] = "/dev/input/event1"; uint64_t trig_irq = 0, serv_irq = 0; uint16_t irq_delay = 0; unsigned int amiga_reset=0, amiga_reset_last=0; unsigned int do_reset=0; void *ipl_task(void *args) { printf("IPL thread running\n"); uint16_t old_irq = 0; uint32_t value; while (1) { value = *(gpio + 13); if (value & (1 << PIN_TXN_IN_PROGRESS)) goto noppers; if (!(value & (1 << PIN_IPL_ZERO)) || ipl_enabled[amiga_emulated_ipl()]) { old_irq = irq_delay; //NOP if (!irq) { M68K_END_TIMESLICE; NOP irq = 1; } //usleep(0); } else { if (irq) { if (old_irq) { old_irq--; } else { irq = 0; } M68K_END_TIMESLICE; NOP //usleep(0); } } if(do_reset==0) { amiga_reset=(value & (1 << PIN_RESET)); if(amiga_reset!=amiga_reset_last) { amiga_reset_last=amiga_reset; if(amiga_reset==0) { printf("Amiga Reset is down...\n"); do_reset=1; M68K_END_TIMESLICE; } else { printf("Amiga Reset is up...\n"); } } } /*if (gayle_ide_enabled) { if (((gayle_int & 0x80) || gayle_a4k_int) && (get_ide(0)->drive[0].intrq || get_ide(0)->drive[1].intrq)) { //get_ide(0)->drive[0].intrq = 0; gayleirq = 1; M68K_END_TIMESLICE; } else gayleirq = 0; }*/ //usleep(0); //NOP NOP noppers: NOP NOP NOP NOP NOP NOP NOP NOP //NOP NOP NOP NOP NOP NOP NOP NOP //NOP NOP NOP NOP NOP NOP NOP NOP /*NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP*/ } return args; } static inline void m68k_execute_bef(m68ki_cpu_core *state, int num_cycles) { /* eat up any reset cycles */ if (RESET_CYCLES) { int rc = RESET_CYCLES; RESET_CYCLES = 0; num_cycles -= rc; if (num_cycles <= 0) return; } /* Set our pool of clock cycles available */ SET_CYCLES(num_cycles); m68ki_initial_cycles = num_cycles; /* See if interrupts came in */ m68ki_check_interrupts(state); /* Make sure we're not stopped */ if(!CPU_STOPPED) { /* Return point if we had an address error */ m68ki_set_address_error_trap(state); /* auto-disable (see m68kcpu.h) */ #ifdef M68K_BUSERR_THING m68ki_check_bus_error_trap(); #endif /* Main loop. Keep going until we run out of clock cycles */ do { /* Set tracing according to T1. (T0 is done inside instruction) */ m68ki_trace_t1(); /* auto-disable (see m68kcpu.h) */ /* Set the address space for reads */ m68ki_use_data_space(); /* auto-disable (see m68kcpu.h) */ /* Call external hook to peek at CPU */ m68ki_instr_hook(REG_PC); /* auto-disable (see m68kcpu.h) */ /* Record previous program counter */ REG_PPC = REG_PC; /* Record previous D/A register state (in case of bus error) */ //#define M68K_BUSERR_THING #ifdef M68K_BUSERR_THING for (int i = 15; i >= 0; i--){ REG_DA_SAVE[i] = REG_DA[i]; } #endif /* Read an instruction and call its handler */ REG_IR = m68ki_read_imm_16(state); m68ki_instruction_jump_table[REG_IR](state); USE_CYCLES(CYC_INSTRUCTION[REG_IR]); /* Trace m68k_exception, if necessary */ m68ki_exception_if_trace(state); /* auto-disable (see m68kcpu.h) */ } while(GET_CYCLES() > 0); /* set previous PC to current PC for the next entry into the loop */ REG_PPC = REG_PC; } else SET_CYCLES(0); /* return how many clocks we used */ return; } void *cpu_task() { m68ki_cpu_core *state = &m68ki_cpu; state->ovl = ovl; state->gpio = gpio; m68k_pulse_reset(state); cpu_loop: if (mouse_hook_enabled) { get_mouse_status(&mouse_dx, &mouse_dy, &mouse_buttons, &mouse_extra); } if (realtime_disassembly && (do_disasm || cpu_emulation_running)) { m68k_disassemble(disasm_buf, m68k_get_reg(NULL, M68K_REG_PC), cpu_type); printf("REGA: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_A0), m68k_get_reg(NULL, M68K_REG_A1), m68k_get_reg(NULL, M68K_REG_A2), m68k_get_reg(NULL, M68K_REG_A3), \ m68k_get_reg(NULL, M68K_REG_A4), m68k_get_reg(NULL, M68K_REG_A5), m68k_get_reg(NULL, M68K_REG_A6), m68k_get_reg(NULL, M68K_REG_A7)); printf("REGD: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_D0), m68k_get_reg(NULL, M68K_REG_D1), m68k_get_reg(NULL, M68K_REG_D2), m68k_get_reg(NULL, M68K_REG_D3), \ m68k_get_reg(NULL, M68K_REG_D4), m68k_get_reg(NULL, M68K_REG_D5), m68k_get_reg(NULL, M68K_REG_D6), m68k_get_reg(NULL, M68K_REG_D7)); printf("%.8X (%.8X)]] %s\n", m68k_get_reg(NULL, M68K_REG_PC), (m68k_get_reg(NULL, M68K_REG_PC) & 0xFFFFFF), disasm_buf); if (do_disasm) do_disasm--; m68k_execute_bef(state, 1); } else { if (cpu_emulation_running) { if (irq) m68k_execute_bef(state, 5); else m68k_execute_bef(state, loop_cycles); } } if (irq) { last_irq = ((ps_read_status_reg() & 0xe000) >> 13); uint8_t amiga_irq = amiga_emulated_ipl(); if (amiga_irq >= last_irq) { last_irq = amiga_irq; } if (last_irq != 0 && last_irq != last_last_irq) { last_last_irq = last_irq; M68K_SET_IRQ(last_irq); } } if (!irq && last_last_irq != 0) { M68K_SET_IRQ(0); last_last_irq = 0; } if (do_reset) { cpu_pulse_reset(); do_reset=0; usleep(1000000); // 1sec rtg_on=0; // while(amiga_reset==0); // printf("CPU emulation reset.\n"); } if (mouse_hook_enabled && (mouse_extra != 0x00)) { // mouse wheel events have occurred; unlike l/m/r buttons, these are queued as keypresses, so add to end of buffer switch (mouse_extra) { case 0xff: // wheel up queue_keypress(0xfe, KEYPRESS_PRESS, PLATFORM_AMIGA); break; case 0x01: // wheel down queue_keypress(0xff, KEYPRESS_PRESS, PLATFORM_AMIGA); break; } // dampen the scroll wheel until next while loop iteration mouse_extra = 0x00; } if (load_new_config) { printf("[CPU] Loading new config file.\n"); goto stop_cpu_emulation; } if (end_signal) goto stop_cpu_emulation; goto cpu_loop; stop_cpu_emulation: printf("[CPU] End of CPU thread\n"); return (void *)NULL; } void *keyboard_task() { struct pollfd kbdpoll[1]; int kpollrc; char c = 0, c_code = 0, c_type = 0; char grab_message[] = "[KBD] Grabbing keyboard from input layer", ungrab_message[] = "[KBD] Ungrabbing keyboard"; printf("[KBD] Keyboard thread started\n"); // because we permit the keyboard to be grabbed on startup, quickly check if we need to grab it if (kb_hook_enabled && cfg->keyboard_grab) { puts(grab_message); grab_device(keyboard_fd); } kbdpoll[0].fd = keyboard_fd; kbdpoll[0].events = POLLIN; key_loop: kpollrc = poll(kbdpoll, 1, KEY_POLL_INTERVAL_MSEC); if ((kpollrc > 0) && (kbdpoll[0].revents & POLLHUP)) { // in the event that a keyboard is unplugged, keyboard_task will whiz up to 100% utilisation // this is undesired, so if the keyboard HUPs, end the thread without ending the emulation printf("[KBD] Keyboard node returned HUP (unplugged?)\n"); goto key_end; } // if kpollrc > 0 then it contains number of events to pull, also check if POLLIN is set in revents if ((kpollrc <= 0) || !(kbdpoll[0].revents & POLLIN)) { if (cfg->platform->id == PLATFORM_AMIGA && last_irq != 2 && get_num_kb_queued()) { amiga_emulate_irq(PORTS); } goto key_loop; } while (get_key_char(&c, &c_code, &c_type)) { if (c && c == cfg->keyboard_toggle_key && !kb_hook_enabled) { kb_hook_enabled = 1; printf("[KBD] Keyboard hook enabled.\n"); if (cfg->keyboard_grab) { grab_device(keyboard_fd); puts(grab_message); } } else if (kb_hook_enabled) { if (c == 0x1B && c_type) { kb_hook_enabled = 0; printf("[KBD] Keyboard hook disabled.\n"); if (cfg->keyboard_grab) { release_device(keyboard_fd); puts(ungrab_message); } } else { if (queue_keypress(c_code, c_type, cfg->platform->id)) { if (cfg->platform->id == PLATFORM_AMIGA && last_irq != 2) { amiga_emulate_irq(PORTS); } } } } // pause pressed; trigger nmi (int level 7) if (c == 0x01 && c_type) { printf("[INT] Sending NMI\n"); M68K_SET_IRQ(7); } if (!kb_hook_enabled && c_type) { if (c && c == cfg->mouse_toggle_key) { mouse_hook_enabled ^= 1; printf("Mouse hook %s.\n", mouse_hook_enabled ? "enabled" : "disabled"); mouse_dx = mouse_dy = mouse_buttons = mouse_extra = 0; } if (c == 'r') { cpu_emulation_running ^= 1; printf("CPU emulation is now %s\n", cpu_emulation_running ? "running" : "stopped"); } if (c == 'g') { realtime_graphics_debug ^= 1; printf("Real time graphics debug is now %s\n", realtime_graphics_debug ? "on" : "off"); } if (c == 'R') { cpu_pulse_reset(); //m68k_pulse_reset(); printf("CPU emulation reset.\n"); } if (c == 'q') { printf("Quitting and exiting emulator.\n"); end_signal = 1; goto key_end; } if (c == 'd') { realtime_disassembly ^= 1; do_disasm = 1; printf("Real time disassembly is now %s\n", realtime_disassembly ? "on" : "off"); } if (c == 'D') { int r = get_mapped_item_by_address(cfg, 0x08000000); if (r != -1) { printf("Dumping first 16MB of mapped range %d.\n", r); FILE *dmp = fopen("./memdmp.bin", "wb+"); fwrite(cfg->map_data[r], 16 * SIZE_MEGA, 1, dmp); fclose(dmp); } } if (c == 's' && realtime_disassembly) { do_disasm = 1; } if (c == 'S' && realtime_disassembly) { do_disasm = 128; } } } goto key_loop; key_end: printf("[KBD] Keyboard thread ending\n"); if (cfg->keyboard_grab) { puts(ungrab_message); release_device(keyboard_fd); } return (void*)NULL; } void stop_cpu_emulation(uint8_t disasm_cur) { M68K_END_TIMESLICE; if (disasm_cur) { m68k_disassemble(disasm_buf, m68k_get_reg(NULL, M68K_REG_PC), cpu_type); printf("REGA: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_A0), m68k_get_reg(NULL, M68K_REG_A1), m68k_get_reg(NULL, M68K_REG_A2), m68k_get_reg(NULL, M68K_REG_A3), \ m68k_get_reg(NULL, M68K_REG_A4), m68k_get_reg(NULL, M68K_REG_A5), m68k_get_reg(NULL, M68K_REG_A6), m68k_get_reg(NULL, M68K_REG_A7)); printf("REGD: 0:$%.8X 1:$%.8X 2:$%.8X 3:$%.8X 4:$%.8X 5:$%.8X 6:$%.8X 7:$%.8X\n", m68k_get_reg(NULL, M68K_REG_D0), m68k_get_reg(NULL, M68K_REG_D1), m68k_get_reg(NULL, M68K_REG_D2), m68k_get_reg(NULL, M68K_REG_D3), \ m68k_get_reg(NULL, M68K_REG_D4), m68k_get_reg(NULL, M68K_REG_D5), m68k_get_reg(NULL, M68K_REG_D6), m68k_get_reg(NULL, M68K_REG_D7)); printf("%.8X (%.8X)]] %s\n", m68k_get_reg(NULL, M68K_REG_PC), (m68k_get_reg(NULL, M68K_REG_PC) & 0xFFFFFF), disasm_buf); realtime_disassembly = 1; } cpu_emulation_running = 0; do_disasm = 0; } void sigint_handler(int sig_num) { //if (sig_num) { } //cpu_emulation_running = 0; //return; printf("Received sigint %d, exiting.\n", sig_num); if (mouse_fd != -1) close(mouse_fd); if (mem_fd) close(mem_fd); if (cfg->platform->shutdown) { cfg->platform->shutdown(cfg); } while (!emulator_exiting) { emulator_exiting = 1; usleep(0); } printf("IRQs triggered: %lld\n", trig_irq); printf("IRQs serviced: %lld\n", serv_irq); printf("Last serviced IRQ: %d\n", last_last_irq); exit(0); } int main(int argc, char *argv[]) { int g; ps_setup_protocol(); //const struct sched_param priority = {99}; // Some command line switch stuffles for (g = 1; g < argc; g++) { if (strcmp(argv[g], "--cpu_type") == 0 || strcmp(argv[g], "--cpu") == 0) { if (g + 1 >= argc) { printf("%s switch found, but no CPU type specified.\n", argv[g]); } else { g++; cpu_type = get_m68k_cpu_type(argv[g]); } } else if (strcmp(argv[g], "--config-file") == 0 || strcmp(argv[g], "--config") == 0) { if (g + 1 >= argc) { printf("%s switch found, but no config filename specified.\n", argv[g]); } else { g++; FILE *chk = fopen(argv[g], "rb"); if (chk == NULL) { printf("Config file %s does not exist, please check that you've specified the path correctly.\n", argv[g]); } else { fclose(chk); load_new_config = 1; set_pistorm_devcfg_filename(argv[g]); } } } else if (strcmp(argv[g], "--keyboard-file") == 0 || strcmp(argv[g], "--kbfile") == 0) { if (g + 1 >= argc) { printf("%s switch found, but no keyboard device path specified.\n", argv[g]); } else { g++; strcpy(keyboard_file, argv[g]); } } } switch_config: srand(clock()); ps_reset_state_machine(); ps_pulse_reset(); usleep(1500); if (load_new_config != 0) { uint8_t config_action = load_new_config - 1; load_new_config = 0; if (cfg) { free_config_file(cfg); free(cfg); cfg = NULL; } switch(config_action) { case PICFG_LOAD: case PICFG_RELOAD: cfg = load_config_file(get_pistorm_devcfg_filename()); break; case PICFG_DEFAULT: cfg = load_config_file("default.cfg"); break; } } if (!cfg) { printf("No config file specified. Trying to load default.cfg...\n"); cfg = load_config_file("default.cfg"); if (!cfg) { printf("Couldn't load default.cfg, empty emulator config will be used.\n"); cfg = (struct emulator_config *)calloc(1, sizeof(struct emulator_config)); if (!cfg) { printf("Failed to allocate memory for emulator config!\n"); return 1; } memset(cfg, 0x00, sizeof(struct emulator_config)); } } if (cfg) { if (cfg->cpu_type) cpu_type = cfg->cpu_type; if (cfg->loop_cycles) loop_cycles = cfg->loop_cycles; if (!cfg->platform) cfg->platform = make_platform_config("none", "generic"); cfg->platform->platform_initial_setup(cfg); } if (cfg->mouse_enabled) { mouse_fd = open(cfg->mouse_file, O_RDWR | O_NONBLOCK); if (mouse_fd == -1) { printf("Failed to open %s, can't enable mouse hook.\n", cfg->mouse_file); cfg->mouse_enabled = 0; } else { /** * *-*-*-* magic numbers! *-*-*-* * great, so waaaay back in the history of the pc, the ps/2 protocol set the standard for mice * and in the process, the mouse sample rate was defined as a way of putting mice into vendor-specific modes. * as the ancient gpm command explains, almost everything except incredibly old mice talk the IntelliMouse * protocol, which reports four bytes. by default, every mouse starts in 3-byte mode (don't report wheel or * additional buttons) until imps2 magic is sent. so, command $f3 is "set sample rate", followed by a byte. */ uint8_t mouse_init[] = { 0xf4, 0xf3, 0x64 }; // enable, then set sample rate 100 uint8_t imps2_init[] = { 0xf3, 0xc8, 0xf3, 0x64, 0xf3, 0x50 }; // magic sequence; set sample 200, 100, 80 if (write(mouse_fd, mouse_init, sizeof(mouse_init)) != -1) { if (write(mouse_fd, imps2_init, sizeof(imps2_init)) == -1) printf("[MOUSE] Couldn't enable scroll wheel events; is this mouse from the 1980s?\n"); } else printf("[MOUSE] Mouse didn't respond to normal PS/2 init; have you plugged a brick in by mistake?\n"); } } if (cfg->keyboard_file) keyboard_fd = open(cfg->keyboard_file, O_RDONLY | O_NONBLOCK); else keyboard_fd = open(keyboard_file, O_RDONLY | O_NONBLOCK); if (keyboard_fd == -1) { printf("Failed to open keyboard event source.\n"); } if (cfg->mouse_autoconnect) mouse_hook_enabled = 1; if (cfg->keyboard_autoconnect) kb_hook_enabled = 1; InitGayle(); signal(SIGINT, sigint_handler); ps_reset_state_machine(); ps_pulse_reset(); usleep(1500); m68k_init(); printf("Setting CPU type to %d.\n", cpu_type); m68k_set_cpu_type(&m68ki_cpu, cpu_type); cpu_pulse_reset(); pthread_t ipl_tid = 0, cpu_tid, kbd_tid; int err; if (ipl_tid == 0) { err = pthread_create(&ipl_tid, NULL, &ipl_task, NULL); if (err != 0) printf("[ERROR] Cannot create IPL thread: [%s]", strerror(err)); else { pthread_setname_np(ipl_tid, "pistorm: ipl"); printf("IPL thread created successfully\n"); } } // create keyboard task err = pthread_create(&kbd_tid, NULL, &keyboard_task, NULL); if (err != 0) printf("[ERROR] Cannot create keyboard thread: [%s]", strerror(err)); else { pthread_setname_np(kbd_tid, "pistorm: kbd"); printf("[MAIN] Keyboard thread created successfully\n"); } // create cpu task err = pthread_create(&cpu_tid, NULL, &cpu_task, NULL); if (err != 0) printf("[ERROR] Cannot create CPU thread: [%s]", strerror(err)); else { pthread_setname_np(cpu_tid, "pistorm: cpu"); printf("[MAIN] CPU thread created successfully\n"); } // wait for cpu task to end before closing up and finishing pthread_join(cpu_tid, NULL); while (!emulator_exiting) { emulator_exiting = 1; usleep(0); } if (load_new_config == 0) printf("[MAIN] All threads appear to have concluded; ending process\n"); if (mouse_fd != -1) close(mouse_fd); if (mem_fd) close(mem_fd); if (load_new_config != 0) goto switch_config; if (cfg->platform->shutdown) { cfg->platform->shutdown(cfg); } return 0; } void cpu_pulse_reset(void) { m68ki_cpu_core *state = &m68ki_cpu; ps_pulse_reset(); ovl = 1; m68ki_cpu.ovl = 1; for (int i = 0; i < 8; i++) { ipl_enabled[i] = 0; } if (cfg->platform->handle_reset) cfg->platform->handle_reset(cfg); m68k_pulse_reset(state); } unsigned int cpu_irq_ack(int level) { //printf("cpu irq ack\n"); return 24 + level; } static unsigned int target = 0; static uint32_t platform_res, rres; uint8_t cdtv_dmac_reg_idx_read(); void cdtv_dmac_reg_idx_write(uint8_t value); uint32_t cdtv_dmac_read(uint32_t address, uint8_t type); void cdtv_dmac_write(uint32_t address, uint32_t value, uint8_t type); unsigned int garbage = 0; static inline uint32_t ps_read(uint8_t type, uint32_t addr) { switch (type) { case OP_TYPE_BYTE: return ps_read_8(addr); case OP_TYPE_WORD: return ps_read_16(addr); case OP_TYPE_LONGWORD: return ps_read_32(addr); } // This shouldn't actually happen. return 0; } static inline void ps_write(uint8_t type, uint32_t addr, uint32_t val) { switch (type) { case OP_TYPE_BYTE: ps_write_8(addr, val); return; case OP_TYPE_WORD: ps_write_16(addr, val); return; case OP_TYPE_LONGWORD: ps_write_32(addr, val); return; } // This shouldn't actually happen. return; } static inline int32_t platform_read_check(uint8_t type, uint32_t addr, uint32_t *res) { switch (cfg->platform->id) { case PLATFORM_AMIGA: switch (addr) { case INTREQR: return amiga_handle_intrqr_read(res); break; case CIAAPRA: if (mouse_hook_enabled && (mouse_buttons & 0x01)) { rres = (uint32_t)ps_read(type, addr); *res = (rres ^ 0x40); return 1; } if (swap_df0_with_dfx && spoof_df0_id) { // DF0 doesn't emit a drive type ID on RDY pin // If swapping DF0 with DF1-3 we need to provide this ID so that DF0 continues to function. rres = (uint32_t)ps_read(type, addr); *res = (rres & 0xDF); // Spoof drive id for swapped DF0 by setting RDY low return 1; } return 0; break; case CIAAICR: if (kb_hook_enabled && get_num_kb_queued() && amiga_emulating_irq(PORTS)) { *res = 0x88; return 1; } return 0; break; case CIAADAT: if (kb_hook_enabled && amiga_emulating_irq(PORTS)) { uint8_t c = 0, t = 0; pop_queued_key(&c, &t); t ^= 0x01; rres = ((c << 1) | t) ^ 0xFF; *res = rres; return 1; } return 0; break; case JOY0DAT: if (mouse_hook_enabled) { unsigned short result = (mouse_dy << 8) | (mouse_dx); *res = (unsigned int)result; return 1; } return 0; break; case INTENAR: { // This code is kind of strange and should probably be reworked/revoked. uint8_t enable = 1; rres = (uint16_t)ps_read(type, addr); uint16_t val = rres; if (val & 0x0007) { ipl_enabled[1] = enable; } if (val & 0x0008) { ipl_enabled[2] = enable; } if (val & 0x0070) { ipl_enabled[3] = enable; } if (val & 0x0780) { ipl_enabled[4] = enable; } if (val & 0x1800) { ipl_enabled[5] = enable; } if (val & 0x2000) { ipl_enabled[6] = enable; } if (val & 0x4000) { ipl_enabled[7] = enable; } //printf("Interrupts enabled: M:%d 0-6:%d%d%d%d%d%d\n", ipl_enabled[7], ipl_enabled[6], ipl_enabled[5], ipl_enabled[4], ipl_enabled[3], ipl_enabled[2], ipl_enabled[1]); *res = rres; return 1; break; } case POTGOR: if (mouse_hook_enabled) { unsigned short result = (unsigned short)ps_read(type, addr); // bit 1 rmb, bit 2 mmb if (mouse_buttons & 0x06) { *res = (unsigned int)((result ^ ((mouse_buttons & 0x02) << 9)) // move rmb to bit 10 & (result ^ ((mouse_buttons & 0x04) << 6))); // move mmb to bit 8 return 1; } *res = (unsigned int)(result & 0xfffd); return 1; } return 0; break; case CIABPRB: if (swap_df0_with_dfx) { uint32_t result = (uint32_t)ps_read(type, addr); // SEL0 = 0x80, SEL1 = 0x10, SEL2 = 0x20, SEL3 = 0x40 if (((result >> SEL0_BITNUM) & 1) != ((result >> (SEL0_BITNUM + swap_df0_with_dfx)) & 1)) { // If the value for SEL0/SELx differ result ^= ((1 << SEL0_BITNUM) | (1 << (SEL0_BITNUM + swap_df0_with_dfx))); // Invert both bits to swap them around } *res = result; return 1; } return 0; break; default: break; } if (move_slow_to_chip && addr >= 0x080000 && addr <= 0x0FFFFF) { // A500 JP2 connects Agnus' A19 input to A23 instead of A19 by default, and decodes trapdoor memory at 0xC00000 instead of 0x080000. // We can move the trapdoor to chipram simply by rewriting the address. addr += 0xB80000; *res = ps_read(type, addr); return 1; } if (move_slow_to_chip && addr >= 0xC00000 && addr <= 0xC7FFFF) { // Block accesses through to trapdoor at slow ram address, otherwise it will be detected at 0x080000 and 0xC00000. *res = 0; return 1; } if (addr >= cfg->custom_low && addr < cfg->custom_high) { if (addr >= PISCSI_OFFSET && addr < PISCSI_UPPER) { *res = handle_piscsi_read(addr, type); return 1; } if (addr >= PINET_OFFSET && addr < PINET_UPPER) { *res = handle_pinet_read(addr, type); return 1; } if (addr >= PIGFX_RTG_BASE && addr < PIGFX_UPPER) { *res = rtg_read((addr & 0x0FFFFFFF), type); return 1; } if (addr >= PI_AHI_OFFSET && addr < PI_AHI_UPPER) { *res = handle_pi_ahi_read(addr, type); return 1; } if (custom_read_amiga(cfg, addr, &target, type) != -1) { *res = target; return 1; } } break; default: break; } if (ovl || (addr >= cfg->mapped_low && addr < cfg->mapped_high)) { if (handle_mapped_read(cfg, addr, &target, type) != -1) { *res = target; return 1; } } return 0; } unsigned int m68k_read_memory_8(unsigned int address) { if (platform_read_check(OP_TYPE_BYTE, address, &platform_res)) { return platform_res; } if (address & 0xFF000000) return 0; return (unsigned int)ps_read_8((uint32_t)address); } unsigned int m68k_read_memory_16(unsigned int address) { if (platform_read_check(OP_TYPE_WORD, address, &platform_res)) { return platform_res; } if (address & 0xFF000000) return 0; if (address & 0x01) { return ((ps_read_8(address) << 8) | ps_read_8(address + 1)); } return (unsigned int)ps_read_16((uint32_t)address); } unsigned int m68k_read_memory_32(unsigned int address) { if (platform_read_check(OP_TYPE_LONGWORD, address, &platform_res)) { return platform_res; } if (address & 0xFF000000) return 0; if (address & 0x01) { uint32_t c = ps_read_8(address); c |= (be16toh(ps_read_16(address+1)) << 8); c |= (ps_read_8(address + 3) << 24); return htobe32(c); } uint16_t a = ps_read_16(address); uint16_t b = ps_read_16(address + 2); return (a << 16) | b; } static inline int32_t platform_write_check(uint8_t type, uint32_t addr, uint32_t val) { switch (cfg->platform->id) { case PLATFORM_MAC: switch (addr) { case 0xEFFFFE: // VIA1? if (val & 0x10 && !ovl) { ovl = 1; m68ki_cpu.ovl = 1; printf("[MAC] OVL on.\n"); handle_ovl_mappings_mac68k(cfg); } else if (ovl) { ovl = 0; m68ki_cpu.ovl = 0; printf("[MAC] OVL off.\n"); handle_ovl_mappings_mac68k(cfg); } break; } break; case PLATFORM_AMIGA: switch (addr) { case INTREQ: return amiga_handle_intrq_write(val); break; case CIAAPRA: if (ovl != (val & (1 << 0))) { ovl = (val & (1 << 0)); m68ki_cpu.ovl = ovl; printf("OVL:%x\n", ovl); } return 0; break; case SERDAT: { char *serdat = (char *)&val; // SERDAT word. see amiga dev docs appendix a; upper byte is control codes, and bit 0 is always 1. // ignore this upper byte as it's not viewable data, only display lower byte. printf("%c", serdat[0]); return 0; break; } case INTENA: { // This code is kind of strange and should probably be reworked/revoked. uint8_t enable = 1; if (!(val & 0x8000)) enable = 0; if (val & 0x0007) { ipl_enabled[1] = enable; } if (val & 0x0008) { ipl_enabled[2] = enable; } if (val & 0x0070) { ipl_enabled[3] = 1; } if (val & 0x0780) { ipl_enabled[4] = enable; } if (val & 0x1800) { ipl_enabled[5] = enable; } if (val & 0x2000) { ipl_enabled[6] = enable; } if (val & 0x4000 && enable) { ipl_enabled[7] = 1; } //printf("Interrupts enabled: M:%d 0-6:%d%d%d%d%d%d\n", ipl_enabled[7], ipl_enabled[6], ipl_enabled[5], ipl_enabled[4], ipl_enabled[3], ipl_enabled[2], ipl_enabled[1]); return 0; break; } case CIABPRB: if (swap_df0_with_dfx) { if ((val & ((1 << (SEL0_BITNUM + swap_df0_with_dfx)) | 0x80)) == 0x80) { // If drive selected but motor off, Amiga is reading drive ID. spoof_df0_id = 1; } else { spoof_df0_id = 0; } if (((val >> SEL0_BITNUM) & 1) != ((val >> (SEL0_BITNUM + swap_df0_with_dfx)) & 1)) { // If the value for SEL0/SELx differ val ^= ((1 << SEL0_BITNUM) | (1 << (SEL0_BITNUM + swap_df0_with_dfx))); // Invert both bits to swap them around } ps_write(type,addr,val); return 1; } return 0; break; default: break; } if (move_slow_to_chip && addr >= 0x080000 && addr <= 0x0FFFFF) { // A500 JP2 connects Agnus' A19 input to A23 instead of A19 by default, and decodes trapdoor memory at 0xC00000 instead of 0x080000. // We can move the trapdoor to chipram simply by rewriting the address. addr += 0xB80000; ps_write(type,addr,val); return 1; } if (move_slow_to_chip && addr >= 0xC00000 && addr <= 0xC7FFFF) { // Block accesses through to trapdoor at slow ram address, otherwise it will be detected at 0x080000 and 0xC00000. return 1; } if (addr >= cfg->custom_low && addr < cfg->custom_high) { if (addr >= PISCSI_OFFSET && addr < PISCSI_UPPER) { handle_piscsi_write(addr, val, type); return 1; } if (addr >= PINET_OFFSET && addr < PINET_UPPER) { handle_pinet_write(addr, val, type); return 1; } if (addr >= PIGFX_RTG_BASE && addr < PIGFX_UPPER) { rtg_write((addr & 0x0FFFFFFF), val, type); return 1; } if (addr >= PI_AHI_OFFSET && addr < PI_AHI_UPPER) { handle_pi_ahi_write(addr, val, type); return 1; } if (custom_write_amiga(cfg, addr, val, type) != -1) { return 1; } } break; default: break; } if (ovl || (addr >= cfg->mapped_low && addr < cfg->mapped_high)) { if (handle_mapped_write(cfg, addr, val, type) != -1) { return 1; } } return 0; } void m68k_write_memory_8(unsigned int address, unsigned int value) { if (platform_write_check(OP_TYPE_BYTE, address, value)) return; if (address & 0xFF000000) return; ps_write_8((uint32_t)address, value); return; } void m68k_write_memory_16(unsigned int address, unsigned int value) { if (platform_write_check(OP_TYPE_WORD, address, value)) return; if (address & 0xFF000000) return; if (address & 0x01) { ps_write_8((uint32_t)address, value & 0xFF); ps_write_8((uint32_t)address + 1, (value >> 8) & 0xFF); return; } ps_write_16((uint32_t)address, value); return; } void m68k_write_memory_32(unsigned int address, unsigned int value) { if (platform_write_check(OP_TYPE_LONGWORD, address, value)) return; if (address & 0xFF000000) return; if (address & 0x01) { ps_write_8((uint32_t)address, value & 0xFF); ps_write_16((uint32_t)address + 1, htobe16(((value >> 8) & 0xFFFF))); ps_write_8((uint32_t)address + 3, (value >> 24)); return; } ps_write_16((uint32_t)address, value >> 16); ps_write_16((uint32_t)address + 2, value); return; }