/* ======================================================================== */ /* ========================= LICENSING & COPYRIGHT ======================== */ /* ======================================================================== */ /* * MUSASHI * Version 4.5 * * A portable Motorola M680x0 processor emulation engine. * Copyright Karl Stenerud. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef M68KCPU__HEADER #define M68KCPU__HEADER #ifdef __cplusplus extern "C" { #endif #include "m68k.h" #include #include #include #include #include "gpio/ps_protocol.h" /* ======================================================================== */ /* ==================== ARCHITECTURE-DEPENDANT DEFINES ==================== */ /* ======================================================================== */ /* Check for > 32bit sizes */ #if UINT_MAX > 0xffffffff #define M68K_INT_GT_32_BIT 1 #else #define M68K_INT_GT_32_BIT 0 #endif /* Data types used in this emulation core */ #undef sint8 #undef sint16 #undef sint32 #undef sint64 #undef uint8 #undef uint16 #undef uint32 #undef uint64 #undef sint #undef uint typedef signed char sint8; /* ASG: changed from char to signed char */ typedef signed short sint16; typedef signed int sint32; /* AWJ: changed from long to int */ typedef unsigned char uint8; typedef unsigned short uint16; typedef unsigned int uint32; /* AWJ: changed from long to int */ /* signed and unsigned int must be at least 32 bits wide */ typedef signed int sint; typedef unsigned int uint; #if M68K_USE_64_BIT typedef signed long long sint64; typedef unsigned long long uint64; #else typedef sint32 sint64; typedef uint32 uint64; #endif /* M68K_USE_64_BIT */ /* U64 and S64 are used to wrap long integer constants. */ #ifdef __GNUC__ #define U64(val) val##ULL #define S64(val) val##LL #else #define U64(val) val #define S64(val) val #endif #include "softfloat/milieu.h" #include "softfloat/softfloat.h" /* Allow for architectures that don't have 8-bit sizes */ #if UCHAR_MAX == 0xff #define MAKE_INT_8(A) (sint8)(A) #else #undef sint8 #define sint8 signed int #undef uint8 #define uint8 unsigned int static inline sint MAKE_INT_8(uint value) { return (value & 0x80) ? value | ~0xff : value & 0xff; } #endif /* UCHAR_MAX == 0xff */ /* Allow for architectures that don't have 16-bit sizes */ #if USHRT_MAX == 0xffff #define MAKE_INT_16(A) (sint16)(A) #else #undef sint16 #define sint16 signed int #undef uint16 #define uint16 unsigned int static inline sint MAKE_INT_16(uint value) { return (value & 0x8000) ? value | ~0xffff : value & 0xffff; } #endif /* USHRT_MAX == 0xffff */ /* Allow for architectures that don't have 32-bit sizes */ #if UINT_MAX == 0xffffffff #define MAKE_INT_32(A) (sint32)(A) #else #undef sint32 #define sint32 signed int #undef uint32 #define uint32 unsigned int static inline sint MAKE_INT_32(uint value) { return (value & 0x80000000) ? value | ~0xffffffff : value & 0xffffffff; } #endif /* UINT_MAX == 0xffffffff */ /* ======================================================================== */ /* ============================ GENERAL DEFINES =========================== */ /* ======================================================================== */ /* MMU constants */ #define MMU_ATC_ENTRIES 22 // 68851 has 64, 030 has 22 /* instruction cache constants */ #define M68K_IC_SIZE 128 /* Exception Vectors handled by emulation */ #define EXCEPTION_RESET 0 #define EXCEPTION_BUS_ERROR 2 /* This one is not emulated! */ #define EXCEPTION_ADDRESS_ERROR 3 /* This one is partially emulated (doesn't stack a proper frame yet) */ #define EXCEPTION_ILLEGAL_INSTRUCTION 4 #define EXCEPTION_ZERO_DIVIDE 5 #define EXCEPTION_CHK 6 #define EXCEPTION_TRAPV 7 #define EXCEPTION_PRIVILEGE_VIOLATION 8 #define EXCEPTION_TRACE 9 #define EXCEPTION_1010 10 #define EXCEPTION_1111 11 #define EXCEPTION_FORMAT_ERROR 14 #define EXCEPTION_UNINITIALIZED_INTERRUPT 15 #define EXCEPTION_SPURIOUS_INTERRUPT 24 #define EXCEPTION_INTERRUPT_AUTOVECTOR 24 #define EXCEPTION_TRAP_BASE 32 #define EXCEPTION_MMU_CONFIGURATION 56 // only on 020/030 /* Function codes set by CPU during data/address bus activity */ #define FUNCTION_CODE_USER_DATA 1 #define FUNCTION_CODE_USER_PROGRAM 2 #define FUNCTION_CODE_SUPERVISOR_DATA 5 #define FUNCTION_CODE_SUPERVISOR_PROGRAM 6 #define FUNCTION_CODE_CPU_SPACE 7 /* CPU types for deciding what to emulate */ #define CPU_TYPE_000 (0x00000001) #define CPU_TYPE_008 (0x00000002) #define CPU_TYPE_010 (0x00000004) #define CPU_TYPE_EC020 (0x00000008) #define CPU_TYPE_020 (0x00000010) #define CPU_TYPE_EC030 (0x00000020) #define CPU_TYPE_030 (0x00000040) #define CPU_TYPE_EC040 (0x00000080) #define CPU_TYPE_LC040 (0x00000100) #define CPU_TYPE_040 (0x00000200) #define CPU_TYPE_SCC070 (0x00000400) /* Different ways to stop the CPU */ #define STOP_LEVEL_STOP 1 #define STOP_LEVEL_HALT 2 /* Used for 68000 address error processing */ #define INSTRUCTION_YES 0 #define INSTRUCTION_NO 0x08 #define MODE_READ 0x10 #define MODE_WRITE 0 #define RUN_MODE_NORMAL 0 #define RUN_MODE_BERR_AERR_RESET_WSF 1 // writing the stack frame #define RUN_MODE_BERR_AERR_RESET 2 // stack frame done #define M68K_CACR_IBE 0x10 // Instruction Burst Enable #define M68K_CACR_CI 0x08 // Clear Instruction Cache #define M68K_CACR_CEI 0x04 // Clear Entry in Instruction Cache #define M68K_CACR_FI 0x02 // Freeze Instruction Cache #define M68K_CACR_EI 0x01 // Enable Instruction Cache #ifndef NULL #define NULL ((void*)0) #endif /* ======================================================================== */ /* ================================ MACROS ================================ */ /* ======================================================================== */ /* ---------------------------- General Macros ---------------------------- */ /* Bit Isolation Macros */ #define BIT_0(A) ((A) & 0x00000001) #define BIT_1(A) ((A) & 0x00000002) #define BIT_2(A) ((A) & 0x00000004) #define BIT_3(A) ((A) & 0x00000008) #define BIT_4(A) ((A) & 0x00000010) #define BIT_5(A) ((A) & 0x00000020) #define BIT_6(A) ((A) & 0x00000040) #define BIT_7(A) ((A) & 0x00000080) #define BIT_8(A) ((A) & 0x00000100) #define BIT_9(A) ((A) & 0x00000200) #define BIT_A(A) ((A) & 0x00000400) #define BIT_B(A) ((A) & 0x00000800) #define BIT_C(A) ((A) & 0x00001000) #define BIT_D(A) ((A) & 0x00002000) #define BIT_E(A) ((A) & 0x00004000) #define BIT_F(A) ((A) & 0x00008000) #define BIT_10(A) ((A) & 0x00010000) #define BIT_11(A) ((A) & 0x00020000) #define BIT_12(A) ((A) & 0x00040000) #define BIT_13(A) ((A) & 0x00080000) #define BIT_14(A) ((A) & 0x00100000) #define BIT_15(A) ((A) & 0x00200000) #define BIT_16(A) ((A) & 0x00400000) #define BIT_17(A) ((A) & 0x00800000) #define BIT_18(A) ((A) & 0x01000000) #define BIT_19(A) ((A) & 0x02000000) #define BIT_1A(A) ((A) & 0x04000000) #define BIT_1B(A) ((A) & 0x08000000) #define BIT_1C(A) ((A) & 0x10000000) #define BIT_1D(A) ((A) & 0x20000000) #define BIT_1E(A) ((A) & 0x40000000) #define BIT_1F(A) ((A) & 0x80000000) /* Get the most significant bit for specific sizes */ #define GET_MSB_8(A) ((A) & 0x80) #define GET_MSB_9(A) ((A) & 0x100) #define GET_MSB_16(A) ((A) & 0x8000) #define GET_MSB_17(A) ((A) & 0x10000) #define GET_MSB_32(A) ((A) & 0x80000000) #if M68K_USE_64_BIT #define GET_MSB_33(A) ((A) & 0x100000000) #endif /* M68K_USE_64_BIT */ /* Isolate nibbles */ #define LOW_NIBBLE(A) ((A) & 0x0f) #define HIGH_NIBBLE(A) ((A) & 0xf0) /* These are used to isolate 8, 16, and 32 bit sizes */ #define MASK_OUT_ABOVE_2(A) ((A) & 3) #define MASK_OUT_ABOVE_8(A) ((A) & 0xff) #define MASK_OUT_ABOVE_16(A) ((A) & 0xffff) #define MASK_OUT_BELOW_2(A) ((A) & ~3) #define MASK_OUT_BELOW_8(A) ((A) & ~0xff) #define MASK_OUT_BELOW_16(A) ((A) & ~0xffff) /* No need to mask if we are 32 bit */ #if M68K_INT_GT_32_BIT || M68K_USE_64_BIT #define MASK_OUT_ABOVE_32(A) ((A) & 0xffffffff) #define MASK_OUT_BELOW_32(A) ((A) & ~0xffffffff) #else #define MASK_OUT_ABOVE_32(A) (A) #define MASK_OUT_BELOW_32(A) 0 #endif /* M68K_INT_GT_32_BIT || M68K_USE_64_BIT */ /* Simulate address lines of 68k family */ #define ADDRESS_68K(A) ((A)&CPU_ADDRESS_MASK) /* Shift & Rotate Macros. */ #define LSL(A, C) ((A) << (C)) #define LSR(A, C) ((A) >> (C)) /* Some > 32-bit optimizations */ #if M68K_INT_GT_32_BIT /* Shift left and right */ #define LSR_32(A, C) ((A) >> (C)) #define LSL_32(A, C) ((A) << (C)) #else /* We have to do this because the morons at ANSI decided that shifts * by >= data size are undefined. */ #define LSR_32(A, C) ((C) < 32 ? (A) >> (C) : 0) #define LSL_32(A, C) ((C) < 32 ? (A) << (C) : 0) #endif /* M68K_INT_GT_32_BIT */ #if M68K_USE_64_BIT #define LSL_32_64(A, C) ((A) << (C)) #define LSR_32_64(A, C) ((A) >> (C)) #define ROL_33_64(A, C) (LSL_32_64(A, C) | LSR_32_64(A, 33-(C))) #define ROR_33_64(A, C) (LSR_32_64(A, C) | LSL_32_64(A, 33-(C))) #endif /* M68K_USE_64_BIT */ #define ROL_8(A, C) MASK_OUT_ABOVE_8(LSL(A, C) | LSR(A, 8-(C))) #define ROL_9(A, C) (LSL(A, C) | LSR(A, 9-(C))) #define ROL_16(A, C) MASK_OUT_ABOVE_16(LSL(A, C) | LSR(A, 16-(C))) #define ROL_17(A, C) (LSL(A, C) | LSR(A, 17-(C))) #define ROL_32(A, C) MASK_OUT_ABOVE_32(LSL_32(A, C) | LSR_32(A, 32-(C))) #define ROL_33(A, C) (LSL_32(A, C) | LSR_32(A, 33-(C))) #define ROR_8(A, C) MASK_OUT_ABOVE_8(LSR(A, C) | LSL(A, 8-(C))) #define ROR_9(A, C) (LSR(A, C) | LSL(A, 9-(C))) #define ROR_16(A, C) MASK_OUT_ABOVE_16(LSR(A, C) | LSL(A, 16-(C))) #define ROR_17(A, C) (LSR(A, C) | LSL(A, 17-(C))) #define ROR_32(A, C) MASK_OUT_ABOVE_32(LSR_32(A, C) | LSL_32(A, 32-(C))) #define ROR_33(A, C) (LSR_32(A, C) | LSL_32(A, 33-(C))) /* ------------------------------ CPU Access ------------------------------ */ /* Access the CPU registers */ #define CPU_TYPE state->cpu_type #define REG_DA state->dar /* easy access to data and address regs */ #define REG_DA_SAVE state->dar_save #define REG_D state->dar #define REG_A (state->dar+8) #define REG_PPC state->ppc #define REG_PC state->pc #define REG_SP_BASE state->sp #define REG_USP state->sp[0] #define REG_ISP state->sp[4] #define REG_MSP state->sp[6] #define REG_SP state->dar[15] #define REG_VBR state->vbr #define REG_SFC state->sfc #define REG_DFC state->dfc #define REG_CACR state->cacr #define REG_CAAR state->caar #define REG_IR state->ir #define REG_FP state->fpr #define REG_FPCR state->fpcr #define REG_FPSR state->fpsr #define REG_FPIAR state->fpiar #define FLAG_T1 state->t1_flag #define FLAG_T0 state->t0_flag #define FLAG_S state->s_flag #define FLAG_M state->m_flag #define FLAG_X state->x_flag #define FLAG_N state->n_flag #define FLAG_Z state->not_z_flag #define FLAG_V state->v_flag #define FLAG_C state->c_flag #define FLAG_INT_MASK state->int_mask #define CPU_INT_LEVEL m68ki_cpu.int_level /* ASG: changed from CPU_INTS_PENDING */ #define CPU_STOPPED m68ki_cpu.stopped #define CPU_PREF_ADDR state->pref_addr #define CPU_PREF_DATA state->pref_data #define CPU_ADDRESS_MASK state->address_mask #define CPU_SR_MASK state->sr_mask #define CPU_INSTR_MODE state->instr_mode #define CPU_RUN_MODE state->run_mode #define CYC_INSTRUCTION state->cyc_instruction #define CYC_EXCEPTION state->cyc_exception #define CYC_BCC_NOTAKE_B state->cyc_bcc_notake_b #define CYC_BCC_NOTAKE_W state->cyc_bcc_notake_w #define CYC_DBCC_F_NOEXP state->cyc_dbcc_f_noexp #define CYC_DBCC_F_EXP state->cyc_dbcc_f_exp #define CYC_SCC_R_TRUE state->cyc_scc_r_true #define CYC_MOVEM_W state->cyc_movem_w #define CYC_MOVEM_L state->cyc_movem_l #define CYC_SHIFT state->cyc_shift #define CYC_RESET state->cyc_reset #define HAS_PMMU state->has_pmmu #define HAS_FPU state->has_fpu #define PMMU_ENABLED state->pmmu_enabled #define RESET_CYCLES state->reset_cycles #define CALLBACK_INT_ACK m68ki_cpu.int_ack_callback #define CALLBACK_BKPT_ACK m68ki_cpu.bkpt_ack_callback #define CALLBACK_RESET_INSTR m68ki_cpu.reset_instr_callback #define CALLBACK_CMPILD_INSTR m68ki_cpu.cmpild_instr_callback #define CALLBACK_RTE_INSTR m68ki_cpu.rte_instr_callback #define CALLBACK_TAS_INSTR m68ki_cpu.tas_instr_callback #define CALLBACK_ILLG_INSTR m68ki_cpu.illg_instr_callback #define CALLBACK_PC_CHANGED m68ki_cpu.pc_changed_callback #define CALLBACK_SET_FC m68ki_cpu.set_fc_callback #define CALLBACK_INSTR_HOOK m68ki_cpu.instr_hook_callback /* ----------------------------- Configuration ---------------------------- */ /* These defines are dependant on the configuration defines in m68kconf.h */ /* Disable certain comparisons if we're not using all CPU types */ #if M68K_EMULATE_040 #define CPU_TYPE_IS_040_PLUS(A) ((A) & (CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_LC040)) #define CPU_TYPE_IS_040_LESS(A) 1 #else #define CPU_TYPE_IS_040_PLUS(A) 0 #define CPU_TYPE_IS_040_LESS(A) 1 #endif #if M68K_EMULATE_030 #define CPU_TYPE_IS_030_PLUS(A) ((A) & (CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_LC040)) #define CPU_TYPE_IS_030_LESS(A) 1 #else #define CPU_TYPE_IS_030_PLUS(A) 0 #define CPU_TYPE_IS_030_LESS(A) 1 #endif #if M68K_EMULATE_020 #define CPU_TYPE_IS_020_PLUS(A) ((A) & (CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_LC040)) #define CPU_TYPE_IS_020_LESS(A) 1 #else #define CPU_TYPE_IS_020_PLUS(A) 0 #define CPU_TYPE_IS_020_LESS(A) 1 #endif #if M68K_EMULATE_EC020 #define CPU_TYPE_IS_EC020_PLUS(A) ((A) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_LC040)) #define CPU_TYPE_IS_EC020_LESS(A) ((A) & (CPU_TYPE_000 | CPU_TYPE_010 | CPU_TYPE_EC020)) #else #define CPU_TYPE_IS_EC020_PLUS(A) CPU_TYPE_IS_020_PLUS(A) #define CPU_TYPE_IS_EC020_LESS(A) CPU_TYPE_IS_020_LESS(A) #endif #if M68K_EMULATE_010 #define CPU_TYPE_IS_010(A) ((A) == CPU_TYPE_010) #define CPU_TYPE_IS_010_PLUS(A) ((A) & (CPU_TYPE_010 | CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_EC030 | CPU_TYPE_030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_LC040)) #define CPU_TYPE_IS_010_LESS(A) ((A) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010)) #else #define CPU_TYPE_IS_010(A) 0 #define CPU_TYPE_IS_010_PLUS(A) CPU_TYPE_IS_EC020_PLUS(A) #define CPU_TYPE_IS_010_LESS(A) CPU_TYPE_IS_EC020_LESS(A) #endif #if M68K_EMULATE_020 || M68K_EMULATE_EC020 #define CPU_TYPE_IS_020_VARIANT(A) ((A) & (CPU_TYPE_EC020 | CPU_TYPE_020)) #else #define CPU_TYPE_IS_020_VARIANT(A) 0 #endif #if M68K_EMULATE_040 || M68K_EMULATE_020 || M68K_EMULATE_EC020 || M68K_EMULATE_010 #define CPU_TYPE_IS_000(A) ((A) == CPU_TYPE_000) #else #define CPU_TYPE_IS_000(A) 1 #endif #if !M68K_SEPARATE_READS #define m68k_read_immediate_16(state, A) m68ki_read_program_16(state, A) #define m68k_read_immediate_32(state, A) m68ki_read_program_32(state, A) #define m68k_read_pcrelative_8(state, A) m68ki_read_program_8(state, A) #define m68k_read_pcrelative_16(state, A) m68ki_read_program_16(state, A) #define m68k_read_pcrelative_32(state, A) m68ki_read_program_32(state, A) #endif /* M68K_SEPARATE_READS */ /* Enable or disable callback functions */ #if M68K_EMULATE_INT_ACK #if M68K_EMULATE_INT_ACK == OPT_SPECIFY_HANDLER #define m68ki_int_ack(A) M68K_INT_ACK_CALLBACK(A) #else #define m68ki_int_ack(A) CALLBACK_INT_ACK(A) #endif #else /* Default action is to used autovector mode, which is most common */ #define m68ki_int_ack(A) M68K_INT_ACK_AUTOVECTOR #endif /* M68K_EMULATE_INT_ACK */ #if M68K_EMULATE_BKPT_ACK #if M68K_EMULATE_BKPT_ACK == OPT_SPECIFY_HANDLER #define m68ki_bkpt_ack(A) M68K_BKPT_ACK_CALLBACK(A) #else #define m68ki_bkpt_ack(A) CALLBACK_BKPT_ACK(A) #endif #else #define m68ki_bkpt_ack(A) #endif /* M68K_EMULATE_BKPT_ACK */ #if M68K_EMULATE_RESET #if M68K_EMULATE_RESET == OPT_SPECIFY_HANDLER #define m68ki_output_reset() M68K_RESET_CALLBACK() #else #define m68ki_output_reset() CALLBACK_RESET_INSTR() #endif #else #define m68ki_output_reset() #endif /* M68K_EMULATE_RESET */ #if M68K_CMPILD_HAS_CALLBACK #if M68K_CMPILD_HAS_CALLBACK == OPT_SPECIFY_HANDLER #define m68ki_cmpild_callback(v,r) M68K_CMPILD_CALLBACK(v,r) #else #define m68ki_cmpild_callback(v,r) CALLBACK_CMPILD_INSTR(v,r) #endif #else #define m68ki_cmpild_callback(v,r) #endif /* M68K_CMPILD_HAS_CALLBACK */ #if M68K_RTE_HAS_CALLBACK #if M68K_RTE_HAS_CALLBACK == OPT_SPECIFY_HANDLER #define m68ki_rte_callback() M68K_RTE_CALLBACK() #else #define m68ki_rte_callback() CALLBACK_RTE_INSTR() #endif #else #define m68ki_rte_callback() #endif /* M68K_RTE_HAS_CALLBACK */ #if M68K_TAS_HAS_CALLBACK #if M68K_TAS_HAS_CALLBACK == OPT_SPECIFY_HANDLER #define m68ki_tas_callback() M68K_TAS_CALLBACK() #else #define m68ki_tas_callback() CALLBACK_TAS_INSTR() #endif #else #define m68ki_tas_callback() 1 #endif /* M68K_TAS_HAS_CALLBACK */ #if M68K_ILLG_HAS_CALLBACK #if M68K_ILLG_HAS_CALLBACK == OPT_SPECIFY_HANDLER #define m68ki_illg_callback(opcode) M68K_ILLG_CALLBACK(opcode) #else #define m68ki_illg_callback(opcode) CALLBACK_ILLG_INSTR(opcode) #endif #else #define m68ki_illg_callback(opcode) 0 // Default is 0 = not handled, exception will occur #endif /* M68K_ILLG_HAS_CALLBACK */ #if M68K_INSTRUCTION_HOOK #if M68K_INSTRUCTION_HOOK == OPT_SPECIFY_HANDLER #define m68ki_instr_hook(pc) M68K_INSTRUCTION_CALLBACK(pc) #else #define m68ki_instr_hook(pc) CALLBACK_INSTR_HOOK(pc) #endif #else #define m68ki_instr_hook(pc) #endif /* M68K_INSTRUCTION_HOOK */ #if M68K_MONITOR_PC #if M68K_MONITOR_PC == OPT_SPECIFY_HANDLER #define m68ki_pc_changed(A) M68K_SET_PC_CALLBACK(ADDRESS_68K(A)) #else #define m68ki_pc_changed(A) CALLBACK_PC_CHANGED(ADDRESS_68K(A)) #endif #else #define m68ki_pc_changed(A) #endif /* M68K_MONITOR_PC */ /* Enable or disable function code emulation */ #if M68K_EMULATE_FC #if M68K_EMULATE_FC == OPT_SPECIFY_HANDLER #define m68ki_set_fc(A) M68K_SET_FC_CALLBACK(A) #else #define m68ki_set_fc(A) CALLBACK_SET_FC(A) #endif #define m68ki_use_data_space() m68ki_address_space = FUNCTION_CODE_USER_DATA #define m68ki_use_program_space() m68ki_address_space = FUNCTION_CODE_USER_PROGRAM #define m68ki_get_address_space() m68ki_address_space #else #define m68ki_set_fc(A) #define m68ki_use_data_space() #define m68ki_use_program_space() #define m68ki_get_address_space() FUNCTION_CODE_USER_DATA #endif /* M68K_EMULATE_FC */ /* Enable or disable trace emulation */ #if M68K_EMULATE_TRACE /* Initiates trace checking before each instruction (t1) */ #define m68ki_trace_t1() m68ki_tracing = FLAG_T1 /* adds t0 to trace checking if we encounter change of flow */ #define m68ki_trace_t0() m68ki_tracing |= FLAG_T0 /* Clear all tracing */ #define m68ki_clear_trace() m68ki_tracing = 0 /* Cause a trace exception if we are tracing */ #define m68ki_exception_if_trace(a) if(m68ki_tracing) m68ki_exception_trace(a) #else #define m68ki_trace_t1() #define m68ki_trace_t0() #define m68ki_clear_trace() #define m68ki_exception_if_trace(...) #endif /* M68K_EMULATE_TRACE */ /* Address error */ #if M68K_EMULATE_ADDRESS_ERROR #include /* sigjmp() on Mac OS X and *BSD in general saves signal contexts and is super-slow, use sigsetjmp() to tell it not to */ #ifdef _BSD_SETJMP_H extern sigjmp_buf m68ki_aerr_trap; #define m68ki_set_address_error_trap(state) \ if(sigsetjmp(m68ki_aerr_trap, 0) != 0) \ { \ m68ki_exception_address_error(state); \ if(CPU_STOPPED) \ { \ if (m68ki_remaining_cycles > 0) \ m68ki_remaining_cycles = 0; \ return m68ki_initial_cycles; \ } \ } #define m68ki_check_address_error(state, ADDR, WRITE_MODE, FC) \ if((ADDR)&1) \ { \ m68ki_aerr_address = ADDR; \ m68ki_aerr_write_mode = WRITE_MODE; \ m68ki_aerr_fc = FC; \ siglongjmp(m68ki_aerr_trap, 1); \ } #else extern jmp_buf m68ki_aerr_trap; #define m68ki_set_address_error_trap(state) \ if(setjmp(m68ki_aerr_trap) != 0) \ { \ m68ki_exception_address_error(); \ if(CPU_STOPPED) \ { \ SET_CYCLES(0); \ return m68ki_initial_cycles; \ } \ /* ensure we don't re-enter execution loop after an address error if there's no more cycles remaining */ \ if(GET_CYCLES() <= 0) \ { \ /* return how many clocks we used */ \ return m68ki_initial_cycles - GET_CYCLES(); \ } \ } #define m68ki_check_address_error(state, ADDR, WRITE_MODE, FC) \ if((ADDR)&1) \ { \ m68ki_aerr_address = ADDR; \ m68ki_aerr_write_mode = WRITE_MODE; \ m68ki_aerr_fc = FC; \ longjmp(m68ki_aerr_trap, 1); \ } #endif #define m68ki_bus_error(ADDR,WRITE_MODE) m68ki_aerr_address=ADDR;m68ki_aerr_write_mode=WRITE_MODE;m68ki_exception_bus_error() #define m68ki_check_address_error_010_less(state, ADDR, WRITE_MODE, FC) \ if (CPU_TYPE_IS_010_LESS(CPU_TYPE)) \ { \ m68ki_check_address_error(state, ADDR, WRITE_MODE, FC) \ } #else #define m68ki_set_address_error_trap(state) #define m68ki_check_address_error(state, ADDR, WRITE_MODE, FC) #define m68ki_check_address_error_010_less(state, ADDR, WRITE_MODE, FC) #endif /* M68K_ADDRESS_ERROR */ /* Logging */ #if M68K_LOG_ENABLE #include // extern FILE* M68K_LOG_FILEHANDLE; extern const char *const m68ki_cpu_names[]; #define M68K_DO_LOG(A) do{printf("*************");printf A;}while(0) //if(M68K_LOG_FILEHANDLE) fprintf A #if M68K_LOG_1010_1111 #define M68K_DO_LOG_EMU(A) printf A //if(M68K_LOG_FILEHANDLE) fprintf A #else #define M68K_DO_LOG_EMU(A) #endif #else #define M68K_DO_LOG(A) #define M68K_DO_LOG_EMU(A) #endif /* -------------------------- EA / Operand Access ------------------------- */ /* * The general instruction format follows this pattern: * .... XXX. .... .YYY * where XXX is register X and YYY is register Y */ /* Data Register Isolation */ #define DX (REG_D[(REG_IR >> 9) & 7]) #define DY (REG_D[REG_IR & 7]) /* Address Register Isolation */ #define AX (REG_A[(REG_IR >> 9) & 7]) #define AY (REG_A[REG_IR & 7]) /* Effective Address Calculations */ #define EA_AY_AI_8() AY /* address register indirect */ #define EA_AY_AI_16() EA_AY_AI_8() #define EA_AY_AI_32() EA_AY_AI_8() #define EA_AY_PI_8() (AY++) /* postincrement (size = byte) */ #define EA_AY_PI_16() ((AY+=2)-2) /* postincrement (size = word) */ #define EA_AY_PI_32() ((AY+=4)-4) /* postincrement (size = long) */ #define EA_AY_PD_8() (--AY) /* predecrement (size = byte) */ #define EA_AY_PD_16() (AY-=2) /* predecrement (size = word) */ #define EA_AY_PD_32() (AY-=4) /* predecrement (size = long) */ #define EA_AY_DI_8() (AY+MAKE_INT_16(m68ki_read_imm_16(state))) /* displacement */ #define EA_AY_DI_16() EA_AY_DI_8() #define EA_AY_DI_32() EA_AY_DI_8() #define EA_AY_IX_8() m68ki_get_ea_ix(state, AY) /* indirect + index */ #define EA_AY_IX_16() EA_AY_IX_8() #define EA_AY_IX_32() EA_AY_IX_8() #define EA_AX_AI_8() AX #define EA_AX_AI_16() EA_AX_AI_8() #define EA_AX_AI_32() EA_AX_AI_8() #define EA_AX_PI_8() (AX++) #define EA_AX_PI_16() ((AX+=2)-2) #define EA_AX_PI_32() ((AX+=4)-4) #define EA_AX_PD_8() (--AX) #define EA_AX_PD_16() (AX-=2) #define EA_AX_PD_32() (AX-=4) #define EA_AX_DI_8() (AX+MAKE_INT_16(m68ki_read_imm_16(state))) #define EA_AX_DI_16() EA_AX_DI_8() #define EA_AX_DI_32() EA_AX_DI_8() #define EA_AX_IX_8() m68ki_get_ea_ix(state, AX) #define EA_AX_IX_16() EA_AX_IX_8() #define EA_AX_IX_32() EA_AX_IX_8() #define EA_A7_PI_8() ((REG_A[7]+=2)-2) #define EA_A7_PD_8() (REG_A[7]-=2) #define EA_AW_8() MAKE_INT_16(m68ki_read_imm_16(state)) /* absolute word */ #define EA_AW_16() EA_AW_8() #define EA_AW_32() EA_AW_8() #define EA_AL_8() m68ki_read_imm_32(state) /* absolute long */ #define EA_AL_16() EA_AL_8() #define EA_AL_32() EA_AL_8() #define EA_PCDI_8() m68ki_get_ea_pcdi(state) /* pc indirect + displacement */ #define EA_PCDI_16() EA_PCDI_8() #define EA_PCDI_32() EA_PCDI_8() #define EA_PCIX_8() m68ki_get_ea_pcix(state) /* pc indirect + index */ #define EA_PCIX_16() EA_PCIX_8() #define EA_PCIX_32() EA_PCIX_8() #define OPER_I_8(state) m68ki_read_imm_8(state) #define OPER_I_16(state) m68ki_read_imm_16(state) #define OPER_I_32(state) m68ki_read_imm_32(state) /* --------------------------- Status Register ---------------------------- */ /* Flag Calculation Macros */ #define CFLAG_8(A) (A) #define CFLAG_16(A) ((A)>>8) #if M68K_INT_GT_32_BIT #define CFLAG_ADD_32(S, D, R) ((R)>>24) #define CFLAG_SUB_32(S, D, R) ((R)>>24) #else #define CFLAG_ADD_32(S, D, R) (((S & D) | (~R & (S | D)))>>23) #define CFLAG_SUB_32(S, D, R) (((S & R) | (~D & (S | R)))>>23) #endif /* M68K_INT_GT_32_BIT */ #define VFLAG_ADD_8(S, D, R) ((S^R) & (D^R)) #define VFLAG_ADD_16(S, D, R) (((S^R) & (D^R))>>8) #define VFLAG_ADD_32(S, D, R) (((S^R) & (D^R))>>24) #define VFLAG_SUB_8(S, D, R) ((S^D) & (R^D)) #define VFLAG_SUB_16(S, D, R) (((S^D) & (R^D))>>8) #define VFLAG_SUB_32(S, D, R) (((S^D) & (R^D))>>24) #define NFLAG_8(A) (A) #define NFLAG_16(A) ((A)>>8) #define NFLAG_32(A) ((A)>>24) #define NFLAG_64(A) ((A)>>56) #define ZFLAG_8(A) MASK_OUT_ABOVE_8(A) #define ZFLAG_16(A) MASK_OUT_ABOVE_16(A) #define ZFLAG_32(A) MASK_OUT_ABOVE_32(A) /* Flag values */ #define NFLAG_SET 0x80 #define NFLAG_CLEAR 0 #define CFLAG_SET 0x100 #define CFLAG_CLEAR 0 #define XFLAG_SET 0x100 #define XFLAG_CLEAR 0 #define VFLAG_SET 0x80 #define VFLAG_CLEAR 0 #define ZFLAG_SET 0 #define ZFLAG_CLEAR 0xffffffff #define SFLAG_SET 4 #define SFLAG_CLEAR 0 #define MFLAG_SET 2 #define MFLAG_CLEAR 0 /* Turn flag values into 1 or 0 */ #define XFLAG_AS_1() ((FLAG_X>>8)&1) #define NFLAG_AS_1() ((FLAG_N>>7)&1) #define VFLAG_AS_1() ((FLAG_V>>7)&1) #define ZFLAG_AS_1() (!FLAG_Z) #define CFLAG_AS_1() ((FLAG_C>>8)&1) /* Conditions */ #define COND_CS() (FLAG_C&0x100) #define COND_CC() (!COND_CS()) #define COND_VS() (FLAG_V&0x80) #define COND_VC() (!COND_VS()) #define COND_NE() FLAG_Z #define COND_EQ() (!COND_NE()) #define COND_MI() (FLAG_N&0x80) #define COND_PL() (!COND_MI()) #define COND_LT() ((FLAG_N^FLAG_V)&0x80) #define COND_GE() (!COND_LT()) #define COND_HI() (COND_CC() && COND_NE()) #define COND_LS() (COND_CS() || COND_EQ()) #define COND_GT() (COND_GE() && COND_NE()) #define COND_LE() (COND_LT() || COND_EQ()) /* Reversed conditions */ #define COND_NOT_CS() COND_CC() #define COND_NOT_CC() COND_CS() #define COND_NOT_VS() COND_VC() #define COND_NOT_VC() COND_VS() #define COND_NOT_NE() COND_EQ() #define COND_NOT_EQ() COND_NE() #define COND_NOT_MI() COND_PL() #define COND_NOT_PL() COND_MI() #define COND_NOT_LT() COND_GE() #define COND_NOT_GE() COND_LT() #define COND_NOT_HI() COND_LS() #define COND_NOT_LS() COND_HI() #define COND_NOT_GT() COND_LE() #define COND_NOT_LE() COND_GT() /* Not real conditions, but here for convenience */ #define COND_XS() (FLAG_X&0x100) #define COND_XC() (!COND_XS) /* Get the condition code register */ #define m68ki_get_ccr(state) ((COND_XS() >> 4) | \ (COND_MI() >> 4) | \ (COND_EQ() << 2) | \ (COND_VS() >> 6) | \ (COND_CS() >> 8)) /* Get the status register */ #define m68ki_get_sr(state) ( FLAG_T1 | \ FLAG_T0 | \ (FLAG_S << 11) | \ (FLAG_M << 11) | \ FLAG_INT_MASK | \ m68ki_get_ccr(state)) /* ---------------------------- Cycle Counting ---------------------------- */ #define ADD_CYCLES(A) m68ki_remaining_cycles += (A) #define USE_CYCLES(A) m68ki_remaining_cycles -= (A) #define SET_CYCLES(A) m68ki_remaining_cycles = A #define GET_CYCLES() m68ki_remaining_cycles #define USE_ALL_CYCLES() m68ki_remaining_cycles %= CYC_INSTRUCTION[REG_IR] /* ----------------------------- Read / Write ----------------------------- */ /* Read from the current address space */ #define m68ki_read_8(state, A) m68ki_read_8_fc (state, A, FLAG_S | m68ki_get_address_space()) #define m68ki_read_16(state, A) m68ki_read_16_fc(state, A, FLAG_S | m68ki_get_address_space()) #define m68ki_read_32(state, A) m68ki_read_32_fc(state, A, FLAG_S | m68ki_get_address_space()) /* Write to the current data space */ #define m68ki_write_8(state, A, V) m68ki_write_8_fc (state, A, FLAG_S | FUNCTION_CODE_USER_DATA, V) #define m68ki_write_16(state, A, V) m68ki_write_16_fc(state, A, FLAG_S | FUNCTION_CODE_USER_DATA, V) #define m68ki_write_32(state, A, V) m68ki_write_32_fc(state, A, FLAG_S | FUNCTION_CODE_USER_DATA, V) #if M68K_SIMULATE_PD_WRITES #define m68ki_write_32_pd(A, V) m68ki_write_32_pd_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V) #else #define m68ki_write_32_pd(state, A, V) m68ki_write_32_fc(state, A, FLAG_S | FUNCTION_CODE_USER_DATA, V) #endif /* Map PC-relative reads */ #define m68ki_read_pcrel_8(state, A) m68k_read_pcrelative_8(state, A) #define m68ki_read_pcrel_16(state, A) m68k_read_pcrelative_16(state, A) #define m68ki_read_pcrel_32(state, A) m68k_read_pcrelative_32(state, A) /* Read from the program space */ #define m68ki_read_program_8(state, A) m68ki_read_8_fc(state, A, FLAG_S | FUNCTION_CODE_USER_PROGRAM) #define m68ki_read_program_16(state, A) m68ki_read_16_fc(state, A, FLAG_S | FUNCTION_CODE_USER_PROGRAM) #define m68ki_read_program_32(state, A) m68ki_read_32_fc(state, A, FLAG_S | FUNCTION_CODE_USER_PROGRAM) /* Read from the data space */ #define m68ki_read_data_8(state, A) m68ki_read_8_fc(state, A, FLAG_S | FUNCTION_CODE_USER_DATA) #define m68ki_read_data_16(state, A) m68ki_read_16_fc(state, A, FLAG_S | FUNCTION_CODE_USER_DATA) #define m68ki_read_data_32(state, A) m68ki_read_32_fc(state, A, FLAG_S | FUNCTION_CODE_USER_DATA) /* ======================================================================== */ /* =============================== PROTOTYPES ============================= */ /* ======================================================================== */ typedef union { uint64 i; double f; } fp_reg; typedef struct { unsigned int lower; unsigned int upper; unsigned char *offset; } address_translation_cache; typedef struct m68ki_cpu_core { uint cpu_type; /* CPU Type: 68000, 68008, 68010, 68EC020, 68020, 68EC030, 68030, 68EC040, or 68040 */ uint dar[16]; /* Data and Address Registers */ uint dar_save[16]; /* Saved Data and Address Registers (pushed onto the stack when a bus error occurs)*/ uint ppc; /* Previous program counter */ uint pc; /* Program Counter */ uint sp[7]; /* User, Interrupt, and Master Stack Pointers */ uint vbr; /* Vector Base Register (m68010+) */ uint sfc; /* Source Function Code Register (m68010+) */ uint dfc; /* Destination Function Code Register (m68010+) */ uint cacr; /* Cache Control Register (m68020, unemulated) */ uint caar; /* Cache Address Register (m68020, unemulated) */ uint ir; /* Instruction Register */ floatx80 fpr[8]; /* FPU Data Register (m68030/040) */ uint fpiar; /* FPU Instruction Address Register (m68040) */ uint fpsr; /* FPU Status Register (m68040) */ uint fpcr; /* FPU Control Register (m68040) */ uint t1_flag; /* Trace 1 */ uint t0_flag; /* Trace 0 */ uint s_flag; /* Supervisor */ uint m_flag; /* Master/Interrupt state */ uint x_flag; /* Extend */ uint n_flag; /* Negative */ uint not_z_flag; /* Zero, inverted for speedups */ uint v_flag; /* Overflow */ uint c_flag; /* Carry */ uint int_mask; /* I0-I2 */ uint int_level; /* State of interrupt pins IPL0-IPL2 -- ASG: changed from ints_pending */ uint stopped; /* Stopped state */ uint pref_addr; /* Last prefetch address */ uint pref_data; /* Data in the prefetch queue */ uint address_mask; /* Available address pins */ uint sr_mask; /* Implemented status register bits */ uint instr_mode; /* Stores whether we are in instruction mode or group 0/1 exception mode */ uint run_mode; /* Stores whether we are processing a reset, bus error, address error, or something else */ int has_pmmu; /* Indicates if a PMMU available (yes on 030, 040, no on EC030) */ int has_fpu; /* Indicates if a FPU available */ int pmmu_enabled; /* Indicates if the PMMU is enabled */ int fpu_just_reset; /* Indicates the FPU was just reset */ uint reset_cycles; /* Clocks required for instructions / exceptions */ uint cyc_bcc_notake_b; uint cyc_bcc_notake_w; uint cyc_dbcc_f_noexp; uint cyc_dbcc_f_exp; uint cyc_scc_r_true; uint cyc_movem_w; uint cyc_movem_l; uint cyc_shift; uint cyc_reset; /* Virtual IRQ lines state */ uint virq_state; uint nmi_pending; /* PMMU registers */ uint mmu_crp_aptr, mmu_crp_limit; uint mmu_srp_aptr, mmu_srp_limit; uint mmu_tc; uint16 mmu_sr; uint mmu_urp_aptr; /* 040 only */ uint mmu_sr_040; uint mmu_atc_tag[MMU_ATC_ENTRIES], mmu_atc_data[MMU_ATC_ENTRIES]; uint mmu_atc_rr; uint mmu_tt0, mmu_tt1; uint mmu_itt0, mmu_itt1, mmu_dtt0, mmu_dtt1; uint mmu_acr0, mmu_acr1, mmu_acr2, mmu_acr3; uint mmu_last_page_entry, mmu_last_page_entry_addr; uint16 mmu_tmp_sr; /* temporary hack: status code for ptest and to handle write protection */ uint16 mmu_tmp_fc; /* temporary hack: function code for the mmu (moves) */ uint16 mmu_tmp_rw; /* temporary hack: read/write (1/0) for the mmu */ uint8 mmu_tmp_sz; /* temporary hack: size for mmu */ uint mmu_tmp_buserror_address; /* temporary hack: (first) bus error address */ uint16 mmu_tmp_buserror_occurred; /* temporary hack: flag that bus error has occurred from mmu */ uint16 mmu_tmp_buserror_fc; /* temporary hack: (first) bus error fc */ uint16 mmu_tmp_buserror_rw; /* temporary hack: (first) bus error rw */ uint16 mmu_tmp_buserror_sz; /* temporary hack: (first) bus error size` */ uint8 mmu_tablewalk; /* set when MMU walks page tables */ uint mmu_last_logical_addr; uint ic_address[M68K_IC_SIZE]; /* instruction cache address data */ uint ic_data[M68K_IC_SIZE]; /* instruction cache content data */ uint8 ic_valid[M68K_IC_SIZE]; /* instruction cache valid flags */ const uint8* cyc_instruction; const uint8* cyc_exception; /* Callbacks to host */ int (*int_ack_callback)(int int_line); /* Interrupt Acknowledge */ void (*bkpt_ack_callback)(unsigned int data); /* Breakpoint Acknowledge */ void (*reset_instr_callback)(void); /* Called when a RESET instruction is encountered */ void (*cmpild_instr_callback)(unsigned int, int); /* Called when a CMPI.L #v, Dn instruction is encountered */ void (*rte_instr_callback)(void); /* Called when a RTE instruction is encountered */ int (*tas_instr_callback)(void); /* Called when a TAS instruction is encountered, allows / disallows writeback */ int (*illg_instr_callback)(int); /* Called when an illegal instruction is encountered, allows handling */ void (*pc_changed_callback)(unsigned int new_pc); /* Called when the PC changes by a large amount */ void (*set_fc_callback)(unsigned int new_fc); /* Called when the CPU function code changes */ void (*instr_hook_callback)(unsigned int pc); /* Called every instruction cycle prior to execution */ /* address translation caches */ uint32 ovl; unsigned char read_ranges; unsigned int read_addr[8]; unsigned int read_upper[8]; unsigned char *read_data[8]; unsigned char write_ranges; unsigned int write_addr[8]; unsigned int write_upper[8]; unsigned char *write_data[8]; address_translation_cache code_translation_cache; address_translation_cache fc_read_translation_cache; address_translation_cache fc_write_translation_cache; volatile unsigned int *gpio; } m68ki_cpu_core; extern m68ki_cpu_core m68ki_cpu; extern sint m68ki_remaining_cycles; extern uint m68ki_tracing; extern const uint8 m68ki_shift_8_table[]; extern const uint16 m68ki_shift_16_table[]; extern const uint m68ki_shift_32_table[]; extern const uint8 m68ki_exception_cycle_table[][256]; extern uint m68ki_address_space; extern const uint8 m68ki_ea_idx_cycle_table[]; extern uint m68ki_aerr_address; extern uint m68ki_aerr_write_mode; extern uint m68ki_aerr_fc; /* Forward declarations to keep some of the macros happy */ static inline uint m68ki_read_16_fc(m68ki_cpu_core *state, uint address, uint fc); static inline uint m68ki_read_32_fc(m68ki_cpu_core *state, uint address, uint fc); static inline uint m68ki_get_ea_ix(m68ki_cpu_core *state, uint An); static inline void m68ki_check_interrupts(m68ki_cpu_core *state); /* ASG: check for interrupts */ /* quick disassembly (used for logging) */ char* m68ki_disassemble_quick(unsigned int pc, unsigned int cpu_type); /* ======================================================================== */ /* =========================== UTILITY FUNCTIONS ========================== */ /* ======================================================================== */ /* ---------------------------- Read Immediate ---------------------------- */ // clear the instruction cache inline void m68ki_ic_clear(m68ki_cpu_core *state) { int i; for (i=0; i< M68K_IC_SIZE; i++) { state->ic_address[i] = ~0; } } extern uint32 pmmu_translate_addr(m68ki_cpu_core *state, uint32 addr_in, uint16 rw); // read immediate word using the instruction cache static inline uint32 m68ki_ic_readimm16(m68ki_cpu_core *state, uint32 address) { if (state->cacr & M68K_CACR_EI) { // 68020 series I-cache (MC68020 User's Manual, Section 4 - On-Chip Cache Memory) if (CPU_TYPE & (CPU_TYPE_EC020 | CPU_TYPE_020)) { uint32 tag = (address >> 8) | (state->s_flag ? 0x1000000 : 0); int idx = (address >> 2) & 0x3f; // 1-of-64 select // do a cache fill if the line is invalid or the tags don't match if ((!state->ic_valid[idx]) || (state->ic_address[idx] != tag)) { // if the cache is frozen, don't update it if (state->cacr & M68K_CACR_FI) { return m68k_read_immediate_16(state, address); } uint32 data = m68ki_read_32(state, address & ~3); //printf("m68k: doing cache fill at %08x (tag %08x idx %d)\n", address, tag, idx); // if no buserror occurred, validate the tag if (!state->mmu_tmp_buserror_occurred) { state->ic_address[idx] = tag; state->ic_data[idx] = data; state->ic_valid[idx] = 1; } else { return m68k_read_immediate_16(state, address); } } // at this point, the cache is guaranteed to be valid, either as // a hit or because we just filled it. if (address & 2) { return state->ic_data[idx] & 0xffff; } else { return state->ic_data[idx] >> 16; } } } return m68k_read_immediate_16(state, address); } /* Handles all immediate reads, does address error check, function code setting, * and prefetching if they are enabled in m68kconf.h */ uint m68ki_read_imm16_addr_slowpath(m68ki_cpu_core *state, uint32_t pc, address_translation_cache *cache); static inline uint m68ki_read_imm_16(m68ki_cpu_core *state) { uint32_t pc = REG_PC; address_translation_cache *cache = &state->code_translation_cache; if(pc >= cache->lower && pc < cache->upper) { REG_PC += 2; return be16toh(((unsigned short *)(cache->offset + pc))[0]); } return m68ki_read_imm16_addr_slowpath(state, pc, cache); } static inline uint m68ki_read_imm_8(m68ki_cpu_core *state) { /* map read immediate 8 to read immediate 16 */ return MASK_OUT_ABOVE_8(m68ki_read_imm_16(state)); } static inline uint m68ki_read_imm_32(m68ki_cpu_core *state) { #if M68K_SEPARATE_READS #if M68K_EMULATE_PMMU // if (PMMU_ENABLED) // address = pmmu_translate_addr(address,1); #endif #endif uint32_t address = ADDRESS_68K(REG_PC); for (int i = 0; i < state->read_ranges; i++) { if(address >= state->read_addr[i] && address < state->read_upper[i]) { REG_PC += 4; return be32toh(((unsigned int *)(state->read_data[i] + (address - state->read_addr[i])))[0]); } } #if M68K_EMULATE_PREFETCH uint temp_val; m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */ state->mmu_tmp_fc = FLAG_S | FUNCTION_CODE_USER_PROGRAM; state->mmu_tmp_rw = 1; state->mmu_tmp_sz = M68K_SZ_LONG; m68ki_check_address_error(state, REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */ if(REG_PC != CPU_PREF_ADDR) { CPU_PREF_ADDR = REG_PC; CPU_PREF_DATA = m68ki_ic_readimm16(state, ADDRESS_68K(CPU_PREF_ADDR)); } temp_val = MASK_OUT_ABOVE_16(CPU_PREF_DATA); REG_PC += 2; CPU_PREF_ADDR = REG_PC; CPU_PREF_DATA = m68ki_ic_readimm16(state, ADDRESS_68K(CPU_PREF_ADDR)); temp_val = MASK_OUT_ABOVE_32((temp_val << 16) | MASK_OUT_ABOVE_16(CPU_PREF_DATA)); REG_PC += 2; CPU_PREF_DATA = m68ki_ic_readimm16(state, REG_PC); CPU_PREF_ADDR = state->mmu_tmp_buserror_occurred ? ((uint32)~0) : REG_PC; return temp_val; #else REG_PC += 4; return m68k_read_immediate_32(state, address); #endif /* M68K_EMULATE_PREFETCH */ } /* ------------------------- Top level read/write ------------------------- */ /* Handles all memory accesses (except for immediate reads if they are * configured to use separate functions in m68kconf.h). * All memory accesses must go through these top level functions. * These functions will also check for address error and set the function * code if they are enabled in m68kconf.h. */ #define SET_FC_TRANSLATION_CACHE_VALUES \ cache->lower = state->read_addr[i]; \ cache->upper = state->read_upper[i]; \ cache->offset = state->read_data[i]; #define SET_FC_WRITE_TRANSLATION_CACHE_VALUES \ cache->lower = state->write_addr[i]; \ cache->upper = state->write_upper[i]; \ cache->offset = state->write_data[i]; // M68KI_READ_8_FC static inline uint m68ki_read_8_fc(m68ki_cpu_core *state, uint address, uint fc) { (void)fc; m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */ state->mmu_tmp_fc = fc; state->mmu_tmp_rw = 1; state->mmu_tmp_sz = M68K_SZ_BYTE; #if M68K_EMULATE_PMMU if (PMMU_ENABLED) address = pmmu_translate_addr(state,address,1); #endif address_translation_cache *cache = &state->fc_read_translation_cache; if(cache->offset && address >= cache->lower && address < cache->upper) { return cache->offset[address - cache->lower]; } for (int i = 0; i < state->read_ranges; i++) { if(address >= state->read_addr[i] && address < state->read_upper[i]) { SET_FC_TRANSLATION_CACHE_VALUES return state->read_data[i][address - state->read_addr[i]]; } } #ifdef CHIP_FASTPATH if (!state->ovl && address < 0x200000) { return ps_read_8(address); } #endif return m68k_read_memory_8(ADDRESS_68K(address)); } // M68KI_READ_16_FC static inline uint m68ki_read_16_fc(m68ki_cpu_core *state, uint address, uint fc) { m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */ state->mmu_tmp_fc = fc; state->mmu_tmp_rw = 1; state->mmu_tmp_sz = M68K_SZ_WORD; m68ki_check_address_error_010_less(state, address, MODE_READ, fc); /* auto-disable (see m68kcpu.h) */ #if M68K_EMULATE_PMMU if (PMMU_ENABLED) address = pmmu_translate_addr(state,address,1); #endif address_translation_cache *cache = &state->fc_read_translation_cache; if(cache->offset && address >= cache->lower && address < cache->upper) { return be16toh(((unsigned short *)(cache->offset + (address - cache->lower)))[0]); } for (int i = 0; i < state->read_ranges; i++) { if(address >= state->read_addr[i] && address < state->read_upper[i]) { SET_FC_TRANSLATION_CACHE_VALUES return be16toh(((unsigned short *)(state->read_data[i] + (address - state->read_addr[i])))[0]); } } #ifdef CHIP_FASTPATH if (!state->ovl && address < 0x200000) { if (address & 0x01) { return ((ps_read_8(address) << 8) | ps_read_8(address + 1)); } return ps_read_16(address); } #endif return m68k_read_memory_16(ADDRESS_68K(address)); } // M68KI_READ_32_FC static inline uint m68ki_read_32_fc(m68ki_cpu_core *state, uint address, uint fc) { m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */ state->mmu_tmp_fc = fc; state->mmu_tmp_rw = 1; state->mmu_tmp_sz = M68K_SZ_LONG; m68ki_check_address_error_010_less(state, address, MODE_READ, fc); /* auto-disable (see m68kcpu.h) */ #if M68K_EMULATE_PMMU if (PMMU_ENABLED) address = pmmu_translate_addr(state,address,1); #endif address_translation_cache *cache = &state->fc_read_translation_cache; if(cache->offset && address >= cache->lower && address < cache->upper) { return be32toh(((unsigned int *)(cache->offset + (address - cache->lower)))[0]); } for (int i = 0; i < state->read_ranges; i++) { if(address >= state->read_addr[i] && address < state->read_upper[i]) { SET_FC_TRANSLATION_CACHE_VALUES return be32toh(((unsigned int *)(state->read_data[i] + (address - state->read_addr[i])))[0]); } } #ifdef CHIP_FASTPATH if (!state->ovl && address < 0x200000) { if (address & 0x01) { uint32_t c = ps_read_8(address); c |= (be16toh(ps_read_16(address+1)) << 8); c |= (ps_read_8(address + 3) << 24); return htobe32(c); } return ps_read_32(address); } #endif return m68k_read_memory_32(ADDRESS_68K(address)); } // M68KI_WRITE_8_FC static inline void m68ki_write_8_fc(m68ki_cpu_core *state, uint address, uint fc, uint value) { m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */ state->mmu_tmp_fc = fc; state->mmu_tmp_rw = 0; state->mmu_tmp_sz = M68K_SZ_BYTE; #if M68K_EMULATE_PMMU if (PMMU_ENABLED) address = pmmu_translate_addr(state,address,0); #endif address_translation_cache *cache = &state->fc_write_translation_cache; if(cache->offset && address >= cache->lower && address < cache->upper) { cache->offset[address - cache->lower] = (unsigned char)value; return; } for (int i = 0; i < state->write_ranges; i++) { if(address >= state->write_addr[i] && address < state->write_upper[i]) { SET_FC_WRITE_TRANSLATION_CACHE_VALUES state->write_data[i][address - state->write_addr[i]] = (unsigned char)value; return; } } #ifdef CHIP_FASTPATH if (!state->ovl && address < 0x200000) { ps_write_8(address, value); return; } #endif m68k_write_memory_8(ADDRESS_68K(address), value); } // M68KI_WRITE_16_FC static inline void m68ki_write_16_fc(m68ki_cpu_core *state, uint address, uint fc, uint value) { m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */ state->mmu_tmp_fc = fc; state->mmu_tmp_rw = 0; state->mmu_tmp_sz = M68K_SZ_WORD; m68ki_check_address_error_010_less(state, address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */ #if M68K_EMULATE_PMMU if (PMMU_ENABLED) address = pmmu_translate_addr(state,address,0); #endif address_translation_cache *cache = &state->fc_write_translation_cache; if(cache->offset && address >= cache->lower && address < cache->upper) { ((short *)(cache->offset + (address - cache->lower)))[0] = htobe16(value); return; } for (int i = 0; i < state->write_ranges; i++) { if(address >= state->write_addr[i] && address < state->write_upper[i]) { SET_FC_WRITE_TRANSLATION_CACHE_VALUES ((short *)(state->write_data[i] + (address - state->write_addr[i])))[0] = htobe16(value); return; } } #ifdef CHIP_FASTPATH if (!state->ovl && address < 0x200000) { if (address & 0x01) { ps_write_8((uint32_t)address, value & 0xFF); ps_write_8((uint32_t)address + 1, (value >> 8) & 0xFF); return; } ps_write_16(address, value); return; } #endif m68k_write_memory_16(ADDRESS_68K(address), value); } // M68KI_WRITE_32_FC static inline void m68ki_write_32_fc(m68ki_cpu_core *state, uint address, uint fc, uint value) { m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */ state->mmu_tmp_fc = fc; state->mmu_tmp_rw = 0; state->mmu_tmp_sz = M68K_SZ_LONG; m68ki_check_address_error_010_less(state, address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */ #if M68K_EMULATE_PMMU if (PMMU_ENABLED) address = pmmu_translate_addr(state,address,0); #endif address_translation_cache *cache = &state->fc_write_translation_cache; if(cache->offset && address >= cache->lower && address < cache->upper) { ((int *)(cache->offset + (address - cache->lower)))[0] = htobe32(value); return; } for (int i = 0; i < state->write_ranges; i++) { if(address >= state->write_addr[i] && address < state->write_upper[i]) { SET_FC_WRITE_TRANSLATION_CACHE_VALUES ((int *)(state->write_data[i] + (address - state->write_addr[i])))[0] = htobe32(value); return; } } #ifdef CHIP_FASTPATH if (!state->ovl && address < 0x200000) { if (address & 0x01) { ps_write_8((uint32_t)address, value & 0xFF); ps_write_16((uint32_t)address + 1, htobe16(((value >> 8) & 0xFFFF))); ps_write_8((uint32_t)address + 3, (value >> 24)); return; } ps_write_32(address, value); return; } #endif m68k_write_memory_32(ADDRESS_68K(address), value); } #if M68K_SIMULATE_PD_WRITES /* Special call to simulate undocumented 68k behavior when move.l with a * predecrement destination mode is executed. * A real 68k first writes the high word to [address+2], and then writes the * low word to [address]. */ static inline void m68ki_write_32_pd_fc(uint address, uint fc, uint value) { m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */ state->mmu_tmp_fc = fc; state->mmu_tmp_rw = 0; state->mmu_tmp_sz = M68K_SZ_LONG; m68ki_check_address_error_010_less(state, address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */ #if M68K_EMULATE_PMMU if (PMMU_ENABLED) address = pmmu_translate_addr(state,address,0); #endif m68k_write_memory_32_pd(ADDRESS_68K(address), value); } #endif /* --------------------- Effective Address Calculation -------------------- */ /* The program counter relative addressing modes cause operands to be * retrieved from program space, not data space. */ static inline uint m68ki_get_ea_pcdi(m68ki_cpu_core *state) { uint old_pc = REG_PC; m68ki_use_program_space(); /* auto-disable */ return old_pc + MAKE_INT_16(m68ki_read_imm_16(state)); } static inline uint m68ki_get_ea_pcix(m68ki_cpu_core *state) { m68ki_use_program_space(); /* auto-disable */ return m68ki_get_ea_ix(state, REG_PC); } /* Indexed addressing modes are encoded as follows: * * Base instruction format: * F E D C B A 9 8 7 6 | 5 4 3 | 2 1 0 * x x x x x x x x x x | 1 1 0 | BASE REGISTER (An) * * Base instruction format for destination EA in move instructions: * F E D C | B A 9 | 8 7 6 | 5 4 3 2 1 0 * x x x x | BASE REG | 1 1 0 | X X X X X X (An) * * Brief extension format: * F | E D C | B | A 9 | 8 | 7 6 5 4 3 2 1 0 * D/A | REGISTER | W/L | SCALE | 0 | DISPLACEMENT * * Full extension format: * F E D C B A 9 8 7 6 5 4 3 2 1 0 * D/A | REGISTER | W/L | SCALE | 1 | BS | IS | BD SIZE | 0 | I/IS * BASE DISPLACEMENT (0, 16, 32 bit) (bd) * OUTER DISPLACEMENT (0, 16, 32 bit) (od) * * D/A: 0 = Dn, 1 = An (Xn) * W/L: 0 = W (sign extend), 1 = L (.SIZE) * SCALE: 00=1, 01=2, 10=4, 11=8 (*SCALE) * BS: 0=add base reg, 1=suppress base reg (An suppressed) * IS: 0=add index, 1=suppress index (Xn suppressed) * BD SIZE: 00=reserved, 01=NULL, 10=Word, 11=Long (size of bd) * * IS I/IS Operation * 0 000 No Memory Indirect * 0 001 indir prex with null outer * 0 010 indir prex with word outer * 0 011 indir prex with long outer * 0 100 reserved * 0 101 indir postx with null outer * 0 110 indir postx with word outer * 0 111 indir postx with long outer * 1 000 no memory indirect * 1 001 mem indir with null outer * 1 010 mem indir with word outer * 1 011 mem indir with long outer * 1 100-111 reserved */ static inline uint m68ki_get_ea_ix(m68ki_cpu_core *state, uint An) { /* An = base register */ uint extension = m68ki_read_imm_16(state); uint Xn = 0; /* Index register */ uint bd = 0; /* Base Displacement */ uint od = 0; /* Outer Displacement */ if(CPU_TYPE_IS_010_LESS(CPU_TYPE)) { /* Calculate index */ Xn = REG_DA[extension>>12]; /* Xn */ if(!BIT_B(extension)) /* W/L */ Xn = MAKE_INT_16(Xn); /* Add base register and displacement and return */ return An + Xn + MAKE_INT_8(extension); } /* Brief extension format */ if(!BIT_8(extension)) { /* Calculate index */ Xn = REG_DA[extension>>12]; /* Xn */ if(!BIT_B(extension)) /* W/L */ Xn = MAKE_INT_16(Xn); /* Add scale if proper CPU type */ if(CPU_TYPE_IS_EC020_PLUS(CPU_TYPE)) Xn <<= (extension>>9) & 3; /* SCALE */ /* Add base register and displacement and return */ return An + Xn + MAKE_INT_8(extension); } /* Full extension format */ USE_CYCLES(m68ki_ea_idx_cycle_table[extension&0x3f]); /* Check if base register is present */ if(BIT_7(extension)) /* BS */ An = 0; /* An */ /* Check if index is present */ if(!BIT_6(extension)) /* IS */ { Xn = REG_DA[extension>>12]; /* Xn */ if(!BIT_B(extension)) /* W/L */ Xn = MAKE_INT_16(Xn); Xn <<= (extension>>9) & 3; /* SCALE */ } /* Check if base displacement is present */ if(BIT_5(extension)) /* BD SIZE */ bd = BIT_4(extension) ? m68ki_read_imm_32(state) : (uint32)MAKE_INT_16(m68ki_read_imm_16(state)); /* If no indirect action, we are done */ if(!(extension&7)) /* No Memory Indirect */ return An + bd + Xn; /* Check if outer displacement is present */ if(BIT_1(extension)) /* I/IS: od */ od = BIT_0(extension) ? m68ki_read_imm_32(state) : (uint32)MAKE_INT_16(m68ki_read_imm_16(state)); /* Postindex */ if(BIT_2(extension)) /* I/IS: 0 = preindex, 1 = postindex */ return m68ki_read_32(state, An + bd) + Xn + od; /* Preindex */ return m68ki_read_32(state, An + bd + Xn) + od; } /* Fetch operands */ static inline uint OPER_AY_AI_8(m68ki_cpu_core *state) {uint ea = EA_AY_AI_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AY_AI_16(m68ki_cpu_core *state) {uint ea = EA_AY_AI_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AY_AI_32(m68ki_cpu_core *state) {uint ea = EA_AY_AI_32(); return m68ki_read_32(state, ea);} static inline uint OPER_AY_PI_8(m68ki_cpu_core *state) {uint ea = EA_AY_PI_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AY_PI_16(m68ki_cpu_core *state) {uint ea = EA_AY_PI_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AY_PI_32(m68ki_cpu_core *state) {uint ea = EA_AY_PI_32(); return m68ki_read_32(state, ea);} static inline uint OPER_AY_PD_8(m68ki_cpu_core *state) {uint ea = EA_AY_PD_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AY_PD_16(m68ki_cpu_core *state) {uint ea = EA_AY_PD_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AY_PD_32(m68ki_cpu_core *state) {uint ea = EA_AY_PD_32(); return m68ki_read_32(state, ea);} static inline uint OPER_AY_DI_8(m68ki_cpu_core *state) {uint ea = EA_AY_DI_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AY_DI_16(m68ki_cpu_core *state) {uint ea = EA_AY_DI_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AY_DI_32(m68ki_cpu_core *state) {uint ea = EA_AY_DI_32(); return m68ki_read_32(state, ea);} static inline uint OPER_AY_IX_8(m68ki_cpu_core *state) {uint ea = EA_AY_IX_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AY_IX_16(m68ki_cpu_core *state) {uint ea = EA_AY_IX_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AY_IX_32(m68ki_cpu_core *state) {uint ea = EA_AY_IX_32(); return m68ki_read_32(state, ea);} static inline uint OPER_AX_AI_8(m68ki_cpu_core *state) {uint ea = EA_AX_AI_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AX_AI_16(m68ki_cpu_core *state) {uint ea = EA_AX_AI_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AX_AI_32(m68ki_cpu_core *state) {uint ea = EA_AX_AI_32(); return m68ki_read_32(state, ea);} static inline uint OPER_AX_PI_8(m68ki_cpu_core *state) {uint ea = EA_AX_PI_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AX_PI_16(m68ki_cpu_core *state) {uint ea = EA_AX_PI_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AX_PI_32(m68ki_cpu_core *state) {uint ea = EA_AX_PI_32(); return m68ki_read_32(state, ea);} static inline uint OPER_AX_PD_8(m68ki_cpu_core *state) {uint ea = EA_AX_PD_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AX_PD_16(m68ki_cpu_core *state) {uint ea = EA_AX_PD_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AX_PD_32(m68ki_cpu_core *state) {uint ea = EA_AX_PD_32(); return m68ki_read_32(state, ea);} static inline uint OPER_AX_DI_8(m68ki_cpu_core *state) {uint ea = EA_AX_DI_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AX_DI_16(m68ki_cpu_core *state) {uint ea = EA_AX_DI_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AX_DI_32(m68ki_cpu_core *state) {uint ea = EA_AX_DI_32(); return m68ki_read_32(state, ea);} static inline uint OPER_AX_IX_8(m68ki_cpu_core *state) {uint ea = EA_AX_IX_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AX_IX_16(m68ki_cpu_core *state) {uint ea = EA_AX_IX_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AX_IX_32(m68ki_cpu_core *state) {uint ea = EA_AX_IX_32(); return m68ki_read_32(state, ea);} static inline uint OPER_A7_PI_8(m68ki_cpu_core *state) {uint ea = EA_A7_PI_8(); return m68ki_read_8(state, ea); } static inline uint OPER_A7_PD_8(m68ki_cpu_core *state) {uint ea = EA_A7_PD_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AW_8(m68ki_cpu_core *state) {uint ea = EA_AW_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AW_16(m68ki_cpu_core *state) {uint ea = EA_AW_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AW_32(m68ki_cpu_core *state) {uint ea = EA_AW_32(); return m68ki_read_32(state, ea);} static inline uint OPER_AL_8(m68ki_cpu_core *state) {uint ea = EA_AL_8(); return m68ki_read_8(state, ea); } static inline uint OPER_AL_16(m68ki_cpu_core *state) {uint ea = EA_AL_16(); return m68ki_read_16(state, ea);} static inline uint OPER_AL_32(m68ki_cpu_core *state) {uint ea = EA_AL_32(); return m68ki_read_32(state, ea);} static inline uint OPER_PCDI_8(m68ki_cpu_core *state) {uint ea = EA_PCDI_8(); return m68ki_read_pcrel_8(state, ea);} static inline uint OPER_PCDI_16(m68ki_cpu_core *state) {uint ea = EA_PCDI_16(); return m68ki_read_pcrel_16(state, ea);} static inline uint OPER_PCDI_32(m68ki_cpu_core *state) {uint ea = EA_PCDI_32(); return m68ki_read_pcrel_32(state, ea);} static inline uint OPER_PCIX_8(m68ki_cpu_core *state) {uint ea = EA_PCIX_8(); return m68ki_read_pcrel_8(state, ea);} static inline uint OPER_PCIX_16(m68ki_cpu_core *state) {uint ea = EA_PCIX_16(); return m68ki_read_pcrel_16(state, ea);} static inline uint OPER_PCIX_32(m68ki_cpu_core *state) {uint ea = EA_PCIX_32(); return m68ki_read_pcrel_32(state, ea);} /* ---------------------------- Stack Functions --------------------------- */ /* Push/pull data from the stack */ static inline void m68ki_push_16(m68ki_cpu_core *state, uint value) { REG_SP = MASK_OUT_ABOVE_32(REG_SP - 2); m68ki_write_16(state, REG_SP, value); } static inline void m68ki_push_32(m68ki_cpu_core *state, uint value) { REG_SP = MASK_OUT_ABOVE_32(REG_SP - 4); m68ki_write_32(state, REG_SP, value); } static inline uint m68ki_pull_16(m68ki_cpu_core *state) { REG_SP = MASK_OUT_ABOVE_32(REG_SP + 2); return m68ki_read_16(state, REG_SP - 2); } static inline uint m68ki_pull_32(m68ki_cpu_core *state) { REG_SP = MASK_OUT_ABOVE_32(REG_SP + 4); return m68ki_read_32(state, REG_SP - 4); } /* Increment/decrement the stack as if doing a push/pull but * don't do any memory access. */ static inline void m68ki_fake_push_16(m68ki_cpu_core *state) { REG_SP = MASK_OUT_ABOVE_32(REG_SP - 2); } static inline void m68ki_fake_push_32(m68ki_cpu_core *state) { REG_SP = MASK_OUT_ABOVE_32(REG_SP - 4); } static inline void m68ki_fake_pull_16(m68ki_cpu_core *state) { REG_SP = MASK_OUT_ABOVE_32(REG_SP + 2); } static inline void m68ki_fake_pull_32(m68ki_cpu_core *state) { REG_SP = MASK_OUT_ABOVE_32(REG_SP + 4); } /* ----------------------------- Program Flow ----------------------------- */ /* Jump to a new program location or vector. * These functions will also call the pc_changed callback if it was enabled * in m68kconf.h. */ static inline void m68ki_jump(m68ki_cpu_core *state, uint new_pc) { REG_PC = new_pc; m68ki_pc_changed(REG_PC); } static inline void m68ki_jump_vector(m68ki_cpu_core *state, uint vector) { REG_PC = (vector<<2) + REG_VBR; REG_PC = m68ki_read_data_32(state, REG_PC); m68ki_pc_changed(REG_PC); } /* Branch to a new memory location. * The 32-bit branch will call pc_changed if it was enabled in m68kconf.h. * So far I've found no problems with not calling pc_changed for 8 or 16 * bit branches. */ static inline void m68ki_branch_8(m68ki_cpu_core *state, uint offset) { REG_PC += MAKE_INT_8(offset); } static inline void m68ki_branch_16(m68ki_cpu_core *state, uint offset) { REG_PC += MAKE_INT_16(offset); } static inline void m68ki_branch_32(m68ki_cpu_core *state, uint offset) { REG_PC += offset; m68ki_pc_changed(REG_PC); } /* ---------------------------- Status Register --------------------------- */ /* Set the S flag and change the active stack pointer. * Note that value MUST be 4 or 0. */ static inline void m68ki_set_s_flag(m68ki_cpu_core *state, uint value) { /* Backup the old stack pointer */ REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)] = REG_SP; /* Set the S flag */ FLAG_S = value; /* Set the new stack pointer */ REG_SP = REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)]; } /* Set the S and M flags and change the active stack pointer. * Note that value MUST be 0, 2, 4, or 6 (bit2 = S, bit1 = M). */ static inline void m68ki_set_sm_flag(m68ki_cpu_core *state, uint value) { /* Backup the old stack pointer */ REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)] = REG_SP; /* Set the S and M flags */ FLAG_S = value & SFLAG_SET; FLAG_M = value & MFLAG_SET; /* Set the new stack pointer */ REG_SP = REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)]; } /* Set the S and M flags. Don't touch the stack pointer. */ static inline void m68ki_set_sm_flag_nosp(m68ki_cpu_core *state, uint value) { /* Set the S and M flags */ FLAG_S = value & SFLAG_SET; FLAG_M = value & MFLAG_SET; } /* Set the condition code register */ static inline void m68ki_set_ccr(m68ki_cpu_core *state, uint value) { FLAG_X = BIT_4(value) << 4; FLAG_N = BIT_3(value) << 4; FLAG_Z = !BIT_2(value); FLAG_V = BIT_1(value) << 6; FLAG_C = BIT_0(value) << 8; } /* Set the status register but don't check for interrupts */ static inline void m68ki_set_sr_noint(m68ki_cpu_core *state, uint value) { /* Mask out the "unimplemented" bits */ value &= CPU_SR_MASK; /* Now set the status register */ FLAG_T1 = BIT_F(value); FLAG_T0 = BIT_E(value); FLAG_INT_MASK = value & 0x0700; m68ki_set_ccr(state, value); m68ki_set_sm_flag(state, (value >> 11) & 6); } /* Set the status register but don't check for interrupts nor * change the stack pointer */ static inline void m68ki_set_sr_noint_nosp(m68ki_cpu_core *state, uint value) { /* Mask out the "unimplemented" bits */ value &= CPU_SR_MASK; /* Now set the status register */ FLAG_T1 = BIT_F(value); FLAG_T0 = BIT_E(value); FLAG_INT_MASK = value & 0x0700; m68ki_set_ccr(state, value); m68ki_set_sm_flag_nosp(state, (value >> 11) & 6); } /* Set the status register and check for interrupts */ static inline void m68ki_set_sr(m68ki_cpu_core *state, uint value) { m68ki_set_sr_noint(state, value); m68ki_check_interrupts(state); } /* ------------------------- Exception Processing ------------------------- */ /* Initiate exception processing */ static inline uint m68ki_init_exception(m68ki_cpu_core *state) { /* Save the old status register */ uint sr = m68ki_get_sr(); /* Turn off trace flag, clear pending traces */ FLAG_T1 = FLAG_T0 = 0; m68ki_clear_trace(); /* Enter supervisor mode */ m68ki_set_s_flag(state, SFLAG_SET); return sr; } /* 3 word stack frame (68000 only) */ static inline void m68ki_stack_frame_3word(m68ki_cpu_core *state, uint pc, uint sr) { m68ki_push_32(state, pc); m68ki_push_16(state, sr); } /* Format 0 stack frame. * This is the standard stack frame for 68010+. */ static inline void m68ki_stack_frame_0000(m68ki_cpu_core *state, uint pc, uint sr, uint vector) { /* Stack a 3-word frame if we are 68000 */ if(CPU_TYPE == CPU_TYPE_000) { m68ki_stack_frame_3word(state, pc, sr); return; } m68ki_push_16(state, vector << 2); m68ki_push_32(state, pc); m68ki_push_16(state, sr); } /* Format 1 stack frame (68020). * For 68020, this is the 4 word throwaway frame. */ static inline void m68ki_stack_frame_0001(m68ki_cpu_core *state, uint pc, uint sr, uint vector) { m68ki_push_16(state, 0x1000 | (vector << 2)); m68ki_push_32(state, pc); m68ki_push_16(state, sr); } /* Format 2 stack frame. * This is used only by 68020 for trap exceptions. */ static inline void m68ki_stack_frame_0010(m68ki_cpu_core *state, uint sr, uint vector) { m68ki_push_32(state, REG_PPC); m68ki_push_16(state, 0x2000 | (vector << 2)); m68ki_push_32(state, REG_PC); m68ki_push_16(state, sr); } /* Bus error stack frame (68000 only). */ static inline void m68ki_stack_frame_buserr(m68ki_cpu_core *state, uint sr) { m68ki_push_32(state, REG_PC); m68ki_push_16(state, sr); m68ki_push_16(state, REG_IR); m68ki_push_32(state, m68ki_aerr_address); /* access address */ /* 0 0 0 0 0 0 0 0 0 0 0 R/W I/N FC * R/W 0 = write, 1 = read * I/N 0 = instruction, 1 = not * FC 3-bit function code */ m68ki_push_16(state, m68ki_aerr_write_mode | CPU_INSTR_MODE | m68ki_aerr_fc); } /* Format 8 stack frame (68010). * 68010 only. This is the 29 word bus/address error frame. */ static inline void m68ki_stack_frame_1000(m68ki_cpu_core *state, uint pc, uint sr, uint vector) { /* VERSION * NUMBER * INTERNAL INFORMATION, 16 WORDS */ m68ki_fake_push_32(state); m68ki_fake_push_32(state); m68ki_fake_push_32(state); m68ki_fake_push_32(state); m68ki_fake_push_32(state); m68ki_fake_push_32(state); m68ki_fake_push_32(state); m68ki_fake_push_32(state); /* INSTRUCTION INPUT BUFFER */ m68ki_push_16(state, 0); /* UNUSED, RESERVED (not written) */ m68ki_fake_push_16(state); /* DATA INPUT BUFFER */ m68ki_push_16(state, 0); /* UNUSED, RESERVED (not written) */ m68ki_fake_push_16(state); /* DATA OUTPUT BUFFER */ m68ki_push_16(state, 0); /* UNUSED, RESERVED (not written) */ m68ki_fake_push_16(state); /* FAULT ADDRESS */ m68ki_push_32(state, 0); /* SPECIAL STATUS WORD */ m68ki_push_16(state, 0); /* 1000, VECTOR OFFSET */ m68ki_push_16(state, 0x8000 | (vector << 2)); /* PROGRAM COUNTER */ m68ki_push_32(state, pc); /* STATUS REGISTER */ m68ki_push_16(state, sr); } /* Format A stack frame (short bus fault). * This is used only by 68020 for bus fault and address error * if the error happens at an instruction boundary. * PC stacked is address of next instruction. */ static inline void m68ki_stack_frame_1010(m68ki_cpu_core *state, uint sr, uint vector, uint pc, uint fault_address) { int orig_rw = state->mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now int orig_fc = state->mmu_tmp_buserror_fc; int orig_sz = state->mmu_tmp_buserror_sz; /* INTERNAL REGISTER */ m68ki_push_16(state, 0); /* INTERNAL REGISTER */ m68ki_push_16(state, 0); /* DATA OUTPUT BUFFER (2 words) */ m68ki_push_32(state, 0); /* INTERNAL REGISTER */ m68ki_push_16(state, 0); /* INTERNAL REGISTER */ m68ki_push_16(state, 0); /* DATA CYCLE FAULT ADDRESS (2 words) */ m68ki_push_32(state, fault_address); /* INSTRUCTION PIPE STAGE B */ m68ki_push_16(state, 0); /* INSTRUCTION PIPE STAGE C */ m68ki_push_16(state, 0); /* SPECIAL STATUS REGISTER */ // set bit for: Rerun Faulted bus Cycle, or run pending prefetch // set FC m68ki_push_16(state, 0x0100 | orig_fc | orig_rw << 6 | orig_sz << 4); /* INTERNAL REGISTER */ m68ki_push_16(state, 0); /* 1010, VECTOR OFFSET */ m68ki_push_16(state, 0xa000 | (vector << 2)); /* PROGRAM COUNTER */ m68ki_push_32(state, pc); /* STATUS REGISTER */ m68ki_push_16(state, sr); } /* Format B stack frame (long bus fault). * This is used only by 68020 for bus fault and address error * if the error happens during instruction execution. * PC stacked is address of instruction in progress. */ static inline void m68ki_stack_frame_1011(m68ki_cpu_core *state, uint sr, uint vector, uint pc, uint fault_address) { int orig_rw = state->mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now int orig_fc = state->mmu_tmp_buserror_fc; int orig_sz = state->mmu_tmp_buserror_sz; /* INTERNAL REGISTERS (18 words) */ m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); /* VERSION# (4 bits), INTERNAL INFORMATION */ m68ki_push_16(state, 0); /* INTERNAL REGISTERS (3 words) */ m68ki_push_32(state, 0); m68ki_push_16(state, 0); /* DATA INTPUT BUFFER (2 words) */ m68ki_push_32(state, 0); /* INTERNAL REGISTERS (2 words) */ m68ki_push_32(state, 0); /* STAGE B ADDRESS (2 words) */ m68ki_push_32(state, 0); /* INTERNAL REGISTER (4 words) */ m68ki_push_32(state, 0); m68ki_push_32(state, 0); /* DATA OUTPUT BUFFER (2 words) */ m68ki_push_32(state, 0); /* INTERNAL REGISTER */ m68ki_push_16(state, 0); /* INTERNAL REGISTER */ m68ki_push_16(state, 0); /* DATA CYCLE FAULT ADDRESS (2 words) */ m68ki_push_32(state, fault_address); /* INSTRUCTION PIPE STAGE B */ m68ki_push_16(state, 0); /* INSTRUCTION PIPE STAGE C */ m68ki_push_16(state, 0); /* SPECIAL STATUS REGISTER */ m68ki_push_16(state, 0x0100 | orig_fc | (orig_rw << 6) | (orig_sz << 4)); /* INTERNAL REGISTER */ m68ki_push_16(state, 0); /* 1011, VECTOR OFFSET */ m68ki_push_16(state, 0xb000 | (vector << 2)); /* PROGRAM COUNTER */ m68ki_push_32(state, pc); /* STATUS REGISTER */ m68ki_push_16(state, sr); } /* Type 7 stack frame (access fault). * This is used by the 68040 for bus fault and mmu trap * 30 words */ static inline void m68ki_stack_frame_0111(m68ki_cpu_core *state, uint sr, uint vector, uint pc, uint fault_address, uint8 in_mmu) { int orig_rw = state->mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now int orig_fc = state->mmu_tmp_buserror_fc; /* INTERNAL REGISTERS (18 words) */ m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); m68ki_push_32(state, 0); /* FAULT ADDRESS (2 words) */ m68ki_push_32(state, fault_address); /* INTERNAL REGISTERS (3 words) */ m68ki_push_32(state, 0); m68ki_push_16(state, 0); /* SPECIAL STATUS REGISTER (1 word) */ m68ki_push_16(state, (in_mmu ? 0x400 : 0) | orig_fc | (orig_rw << 8)); /* EFFECTIVE ADDRESS (2 words) */ m68ki_push_32(state, fault_address); /* 0111, VECTOR OFFSET (1 word) */ m68ki_push_16(state, 0x7000 | (vector << 2)); /* PROGRAM COUNTER (2 words) */ m68ki_push_32(state, pc); /* STATUS REGISTER (1 word) */ m68ki_push_16(state, sr); } /* Used for Group 2 exceptions. * These stack a type 2 frame on the 020. */ static inline void m68ki_exception_trap(m68ki_cpu_core *state, uint vector) { uint sr = m68ki_init_exception(state); if(CPU_TYPE_IS_010_LESS(CPU_TYPE)) m68ki_stack_frame_0000(state, REG_PC, sr, vector); else m68ki_stack_frame_0010(state, sr, vector); m68ki_jump_vector(state, vector); /* Use up some clock cycles and undo the instruction's cycles */ USE_CYCLES(CYC_EXCEPTION[vector] - CYC_INSTRUCTION[REG_IR]); } /* Trap#n stacks a 0 frame but behaves like group2 otherwise */ static inline void m68ki_exception_trapN(m68ki_cpu_core *state, uint vector) { uint sr = m68ki_init_exception(state); m68ki_stack_frame_0000(state, REG_PC, sr, vector); m68ki_jump_vector(state, vector); /* Use up some clock cycles and undo the instruction's cycles */ USE_CYCLES(CYC_EXCEPTION[vector] - CYC_INSTRUCTION[REG_IR]); } /* Exception for trace mode */ static inline void m68ki_exception_trace(m68ki_cpu_core *state) { uint sr = m68ki_init_exception(state); if(CPU_TYPE_IS_010_LESS(CPU_TYPE)) { #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON if(CPU_TYPE_IS_000(CPU_TYPE)) { CPU_INSTR_MODE = INSTRUCTION_NO; } #endif /* M68K_EMULATE_ADDRESS_ERROR */ m68ki_stack_frame_0000(state, REG_PC, sr, EXCEPTION_TRACE); } else m68ki_stack_frame_0010(state, sr, EXCEPTION_TRACE); m68ki_jump_vector(state, EXCEPTION_TRACE); /* Trace nullifies a STOP instruction */ CPU_STOPPED &= ~STOP_LEVEL_STOP; /* Use up some clock cycles */ USE_CYCLES(CYC_EXCEPTION[EXCEPTION_TRACE]); } /* Exception for privilege violation */ static inline void m68ki_exception_privilege_violation(m68ki_cpu_core *state) { uint sr = m68ki_init_exception(state); #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON if(CPU_TYPE_IS_000(CPU_TYPE)) { CPU_INSTR_MODE = INSTRUCTION_NO; } #endif /* M68K_EMULATE_ADDRESS_ERROR */ m68ki_stack_frame_0000(state, REG_PPC, sr, EXCEPTION_PRIVILEGE_VIOLATION); m68ki_jump_vector(state, EXCEPTION_PRIVILEGE_VIOLATION); /* Use up some clock cycles and undo the instruction's cycles */ USE_CYCLES(CYC_EXCEPTION[EXCEPTION_PRIVILEGE_VIOLATION] - CYC_INSTRUCTION[REG_IR]); } extern jmp_buf m68ki_bus_error_jmp_buf; #define m68ki_check_bus_error_trap() setjmp(m68ki_bus_error_jmp_buf) /* Exception for bus error */ static inline void m68ki_exception_bus_error(m68ki_cpu_core *state) { int i; /* If we were processing a bus error, address error, or reset, * this is a catastrophic failure. * Halt the CPU */ if(CPU_RUN_MODE == RUN_MODE_BERR_AERR_RESET) { m68k_read_memory_8(0x00ffff01); CPU_STOPPED = STOP_LEVEL_HALT; return; } CPU_RUN_MODE = RUN_MODE_BERR_AERR_RESET; /* Use up some clock cycles and undo the instruction's cycles */ USE_CYCLES(CYC_EXCEPTION[EXCEPTION_BUS_ERROR] - CYC_INSTRUCTION[REG_IR]); for (i = 15; i >= 0; i--){ REG_DA[i] = REG_DA_SAVE[i]; } uint sr = m68ki_init_exception(state); m68ki_stack_frame_1000(state, REG_PPC, sr, EXCEPTION_BUS_ERROR); m68ki_jump_vector(state, EXCEPTION_BUS_ERROR); longjmp(m68ki_bus_error_jmp_buf, 1); } extern int cpu_log_enabled; /* Exception for A-Line instructions */ static inline void m68ki_exception_1010(m68ki_cpu_core *state) { uint sr; #if M68K_LOG_1010_1111 == OPT_ON M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: called 1010 instruction %04x (%s)\n", m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR, m68ki_disassemble_quick(ADDRESS_68K(REG_PPC),CPU_TYPE))); #endif sr = m68ki_init_exception(state); m68ki_stack_frame_0000(state, REG_PPC, sr, EXCEPTION_1010); m68ki_jump_vector(state, EXCEPTION_1010); /* Use up some clock cycles and undo the instruction's cycles */ USE_CYCLES(CYC_EXCEPTION[EXCEPTION_1010] - CYC_INSTRUCTION[REG_IR]); } /* Exception for F-Line instructions */ static inline void m68ki_exception_1111(m68ki_cpu_core *state) { uint sr; #if M68K_LOG_1010_1111 == OPT_ON M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: called 1111 instruction %04x (%s)\n", m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR, m68ki_disassemble_quick(ADDRESS_68K(REG_PPC),CPU_TYPE))); #endif sr = m68ki_init_exception(state); m68ki_stack_frame_0000(state, REG_PPC, sr, EXCEPTION_1111); m68ki_jump_vector(state, EXCEPTION_1111); /* Use up some clock cycles and undo the instruction's cycles */ USE_CYCLES(CYC_EXCEPTION[EXCEPTION_1111] - CYC_INSTRUCTION[REG_IR]); } #if M68K_ILLG_HAS_CALLBACK == OPT_SPECIFY_HANDLER extern int m68ki_illg_callback(int); #endif /* Exception for illegal instructions */ static inline void m68ki_exception_illegal(m68ki_cpu_core *state) { uint sr; M68K_DO_LOG((M68K_LOG_FILEHANDLE "%s at %08x: illegal instruction %04x (%s)\n", m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR, m68ki_disassemble_quick(ADDRESS_68K(REG_PPC),CPU_TYPE))); if (m68ki_illg_callback(REG_IR)) return; sr = m68ki_init_exception(state); #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON if(CPU_TYPE_IS_000(CPU_TYPE)) { CPU_INSTR_MODE = INSTRUCTION_NO; } #endif /* M68K_EMULATE_ADDRESS_ERROR */ m68ki_stack_frame_0000(state, REG_PPC, sr, EXCEPTION_ILLEGAL_INSTRUCTION); m68ki_jump_vector(state, EXCEPTION_ILLEGAL_INSTRUCTION); /* Use up some clock cycles and undo the instruction's cycles */ USE_CYCLES(CYC_EXCEPTION[EXCEPTION_ILLEGAL_INSTRUCTION] - CYC_INSTRUCTION[REG_IR]); } /* Exception for format errror in RTE */ static inline void m68ki_exception_format_error(m68ki_cpu_core *state) { uint sr = m68ki_init_exception(state); m68ki_stack_frame_0000(state, REG_PC, sr, EXCEPTION_FORMAT_ERROR); m68ki_jump_vector(state, EXCEPTION_FORMAT_ERROR); /* Use up some clock cycles and undo the instruction's cycles */ USE_CYCLES(CYC_EXCEPTION[EXCEPTION_FORMAT_ERROR] - CYC_INSTRUCTION[REG_IR]); } /* Exception for address error */ static inline void m68ki_exception_address_error(m68ki_cpu_core *state) { uint32 sr = m68ki_init_exception(state); /* If we were processing a bus error, address error, or reset, * this is a catastrophic failure. * Halt the CPU */ if(CPU_RUN_MODE == RUN_MODE_BERR_AERR_RESET_WSF) { m68k_read_memory_8(0x00ffff01); CPU_STOPPED = STOP_LEVEL_HALT; return; } CPU_RUN_MODE = RUN_MODE_BERR_AERR_RESET_WSF; if (CPU_TYPE_IS_000(CPU_TYPE)) { /* Note: This is implemented for 68000 only! */ m68ki_stack_frame_buserr(state, sr); } else if (CPU_TYPE_IS_010(CPU_TYPE)) { /* only the 68010 throws this unique type-1000 frame */ m68ki_stack_frame_1000(state, REG_PPC, sr, EXCEPTION_BUS_ERROR); } else if (state->mmu_tmp_buserror_address == REG_PPC) { m68ki_stack_frame_1010(state, sr, EXCEPTION_BUS_ERROR, REG_PPC, state->mmu_tmp_buserror_address); } else { m68ki_stack_frame_1011(state, sr, EXCEPTION_BUS_ERROR, REG_PPC, state->mmu_tmp_buserror_address); } m68ki_jump_vector(state, EXCEPTION_ADDRESS_ERROR); state->run_mode = RUN_MODE_BERR_AERR_RESET; /* Use up some clock cycles. Note that we don't need to undo the instruction's cycles here as we've longjmp:ed directly from the instruction handler without passing the part of the excecute loop that deducts instruction cycles */ USE_CYCLES(CYC_EXCEPTION[EXCEPTION_ADDRESS_ERROR]); } /* Service an interrupt request and start exception processing */ static inline void m68ki_exception_interrupt(m68ki_cpu_core *state, uint int_level) { uint vector; uint sr; uint new_pc; #if M68K_EMULATE_ADDRESS_ERROR == OPT_ON if(CPU_TYPE_IS_000(CPU_TYPE)) { CPU_INSTR_MODE = INSTRUCTION_NO; } #endif /* M68K_EMULATE_ADDRESS_ERROR */ /* Turn off the stopped state */ CPU_STOPPED &= ~STOP_LEVEL_STOP; /* If we are halted, don't do anything */ if(CPU_STOPPED) return; /* Acknowledge the interrupt */ vector = m68ki_int_ack(int_level); /* Get the interrupt vector */ if(vector == M68K_INT_ACK_AUTOVECTOR) /* Use the autovectors. This is the most commonly used implementation */ vector = EXCEPTION_INTERRUPT_AUTOVECTOR+int_level; else if(vector == M68K_INT_ACK_SPURIOUS) /* Called if no devices respond to the interrupt acknowledge */ vector = EXCEPTION_SPURIOUS_INTERRUPT; else if(vector > 255) { M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: Interrupt acknowledge returned invalid vector $%x\n", m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PC), vector)); return; } /* Start exception processing */ sr = m68ki_init_exception(state); /* Set the interrupt mask to the level of the one being serviced */ FLAG_INT_MASK = int_level<<8; /* Get the new PC */ new_pc = m68ki_read_data_32(state, (vector << 2) + REG_VBR); /* If vector is uninitialized, call the uninitialized interrupt vector */ if(new_pc == 0) new_pc = m68ki_read_data_32(state, (EXCEPTION_UNINITIALIZED_INTERRUPT << 2) + REG_VBR); /* Generate a stack frame */ m68ki_stack_frame_0000(state, REG_PC, sr, vector); if(FLAG_M && CPU_TYPE_IS_EC020_PLUS(CPU_TYPE)) { /* Create throwaway frame */ m68ki_set_sm_flag(state, FLAG_S); /* clear M */ sr |= 0x2000; /* Same as SR in master stack frame except S is forced high */ m68ki_stack_frame_0001(state, REG_PC, sr, vector); } m68ki_jump(state, new_pc); /* Defer cycle counting until later */ USE_CYCLES(CYC_EXCEPTION[vector]); #if !M68K_EMULATE_INT_ACK /* Automatically clear IRQ if we are not using an acknowledge scheme */ CPU_INT_LEVEL = 0; #endif /* M68K_EMULATE_INT_ACK */ } /* ASG: Check for interrupts */ static inline void m68ki_check_interrupts(m68ki_cpu_core *state) { if(state->nmi_pending) { state->nmi_pending = FALSE; m68ki_exception_interrupt(state, 7); } else if(CPU_INT_LEVEL > FLAG_INT_MASK) m68ki_exception_interrupt(state, CPU_INT_LEVEL >> 8); } /* ======================================================================== */ /* ============================== END OF FILE ============================= */ /* ======================================================================== */ #ifdef __cplusplus } #endif #endif /* M68KCPU__HEADER */